Fault-related feature discrimination network for cell partitioning and defect classification in real-time solar panel manufacturing

太阳能电池 Softmax函数 光伏系统 人工智能 分类器(UML) 特征(语言学) 计算机科学 深度学习 故障检测与隔离 模式识别(心理学) 分类 可再生能源 工程类 电气工程 哲学 执行机构 语言学
作者
R. Rajesh Kanna,Meikandan Megaraj,C. Daxayani,P. Ganesh Kumar
出处
期刊:Proceedings Of The Institution Of Mechanical Engineers, Part E: Journal Of Process Mechanical Engineering [SAGE Publishing]
卷期号:238 (6): 2809-2820 被引量:11
标识
DOI:10.1177/09544089231164829
摘要

During the production of energy using photovoltaic (PV) panels, solar cells may be affected by different environmental aspects, which cause many defects in the solar cells. Such defects should be identified and categorized to improve energy productivity. Most recent studies developed many deep learning models to categorize solar cell defects, whereas tiny defects were not categorized due to the blurry and overlapping edges. Hence, this paper develops an effective deep-learning model of cell partitioning and defect classification to satisfy the criteria for solar panel manufacturing monitoring. At first, the low-resolution solar cell images are enriched into super-resolved images using the improved super-resolved adversarial network. Then, those images are passed to the novel deep feature discrimination network, which extracts fault-related characteristics from the solar cell images. Those characteristics are further fed to the softmax classifier to categorize the defected or non-defected solar cell images. Moreover, a new mixture of error functions is used for fine-tuning and rapid convergence. Further, a detection bias and compensation in missed faults that limit the model accuracy are found to be unaffected by the categorization of defected/non-defected panels in a real-time manufacturing unit. Finally, assigning certain forecasting standards for various faults categories, the overall test analysis using solar cell images on 5 days exhibits that the presented model attains a maximum accuracy of 99.91% compared to the classical deep learning models. So, this model has a high probability to be used in a real manufacturing unit.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
丘比特应助dyfsj采纳,获得10
2秒前
2秒前
2秒前
李麟发布了新的文献求助10
2秒前
宋芽芽u完成签到 ,获得积分10
3秒前
xiaomi发布了新的文献求助10
7秒前
笑傲江湖完成签到,获得积分10
7秒前
绿绿发布了新的文献求助10
7秒前
共享精神应助iY采纳,获得10
9秒前
小胜发布了新的文献求助10
12秒前
li给li的求助进行了留言
12秒前
清漪完成签到,获得积分10
12秒前
Lucas应助佰斯特威采纳,获得10
12秒前
13秒前
13秒前
重要从灵完成签到,获得积分10
14秒前
酷炫的不二完成签到,获得积分10
14秒前
小凯同学完成签到 ,获得积分10
15秒前
阳和启蛰发布了新的文献求助10
17秒前
科研通AI6应助李麟采纳,获得10
17秒前
菠萝完成签到 ,获得积分10
18秒前
量子星尘发布了新的文献求助10
18秒前
chen123发布了新的文献求助10
19秒前
fantasy完成签到 ,获得积分10
19秒前
Owen应助张晓倩采纳,获得10
19秒前
21秒前
忧虑的靖巧完成签到 ,获得积分10
22秒前
酷波er应助ad钙采纳,获得50
22秒前
23秒前
23秒前
24秒前
25秒前
冰棒比冰冰完成签到 ,获得积分10
26秒前
iY发布了新的文献求助10
26秒前
Hi完成签到 ,获得积分10
26秒前
Olivia发布了新的文献求助20
27秒前
你好发布了新的文献求助200
27秒前
27秒前
28秒前
28秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Organic Chemistry 1500
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III - Liver, Biliary Tract, and Pancreas (3rd Edition) 600
Introducing Sociology Using the Stuff of Everyday Life 400
Conjugated Polymers: Synthesis & Design 400
Picture Books with Same-sex Parented Families: Unintentional Censorship 380
Metals, Minerals, and Society 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4260186
求助须知:如何正确求助?哪些是违规求助? 3793117
关于积分的说明 11896671
捐赠科研通 3440645
什么是DOI,文献DOI怎么找? 1888278
邀请新用户注册赠送积分活动 939016
科研通“疑难数据库(出版商)”最低求助积分说明 844375