Transdiagnostic Connectome-Based Prediction of Craving

渴求 连接体 心理学 渴望食物 上瘾 临床心理学 认知心理学 功能连接 精神科 神经科学
作者
Kathleen A. Garrison,Rajita Sinha,Marc N. Potenza,Siyuan Gao,Qinghao Liang,Cheryl Lacadie,Dustin Scheinost
出处
期刊:American Journal of Psychiatry [American Psychiatric Association]
卷期号:180 (6): 445-453 被引量:36
标识
DOI:10.1176/appi.ajp.21121207
摘要

Objective: Craving is a central construct in the study of motivation and human behavior and is also a clinical symptom of substance and non-substance-related addictive disorders. Thus, craving represents a target for transdiagnostic modeling. Methods: The authors applied connectome-based predictive modeling (CPM) to functional connectivity data in a large (N=274) transdiagnostic sample of individuals with and without substance use–related conditions, to predict self-reported craving. Functional connectomes derived from three guided imagery conditions of personalized appetitive, stress, and neutral-relaxing experiences were used to predict craving rated before and after each imagery condition. The generalizability of the “craving network” was tested in an independent sample using functional connectomes derived from a cue-induced craving task collected before and after fasting to predict craving rated during fasting. Results: CPM successfully predicted craving, thereby identifying a transdiagnostic “craving network.” Anatomical localization of model contribution suggested that the strongest predictors of craving were regions of the salience, subcortical, and default mode networks. As external validation, in an independent sample, the “craving network” predicted food craving during fasting using data from a cue-induced craving task. Conclusions: These data provide a transdiagnostic perspective to a key phenomenological feature of addictive disorders—craving—and identify a common “craving network” across individuals with and without substance use–related disorders, thereby suggesting a neural signature for craving or urge for motivated behaviors.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
shame完成签到,获得积分10
1秒前
奉宣室以何年完成签到,获得积分20
2秒前
5秒前
5秒前
5秒前
5秒前
完美世界应助简单采纳,获得10
6秒前
7秒前
晴晨完成签到 ,获得积分10
9秒前
烟花应助hxm采纳,获得10
10秒前
子厝发布了新的文献求助10
10秒前
zhuminghui发布了新的文献求助10
10秒前
hjg发布了新的文献求助10
11秒前
bkagyin应助欢喜的天空采纳,获得10
15秒前
xr完成签到,获得积分20
16秒前
17秒前
18秒前
18秒前
yhhhhh发布了新的文献求助10
21秒前
大模型应助hjg采纳,获得10
21秒前
hxm发布了新的文献求助10
23秒前
独特的谷雪完成签到,获得积分10
23秒前
望除应助todd采纳,获得10
24秒前
25秒前
斯文的苡完成签到,获得积分10
28秒前
Bizibili完成签到,获得积分10
31秒前
值雨完成签到,获得积分10
32秒前
32秒前
ding应助铃儿响叮当采纳,获得10
32秒前
甜甜十三完成签到,获得积分10
33秒前
34秒前
桐桐应助格格采纳,获得10
34秒前
ding应助黑炭球采纳,获得30
34秒前
忒寒碜完成签到,获得积分10
35秒前
今后应助fl采纳,获得10
35秒前
文献看不懂应助yangmiemie采纳,获得10
35秒前
39秒前
40秒前
yumu完成签到,获得积分10
41秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Mindfulness and Character Strengths: A Practitioner's Guide to MBSP 380
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3776552
求助须知:如何正确求助?哪些是违规求助? 3322124
关于积分的说明 10208682
捐赠科研通 3037339
什么是DOI,文献DOI怎么找? 1666647
邀请新用户注册赠送积分活动 797603
科研通“疑难数据库(出版商)”最低求助积分说明 757893