Building Extraction From Very High-Resolution Remote Sensing Images Using Refine-UNet

计算机科学 棱锥(几何) 人工智能 特征提取 分割 图像分辨率 卷积(计算机科学) 计算机视觉 模式识别(心理学) 编码器 图像分割 遥感 联营 人工神经网络 操作系统 光学 物理 地质学
作者
Weiyan Qiu,Lingjia Gu,Fang Gao,Tao Jiang
出处
期刊:IEEE Geoscience and Remote Sensing Letters [Institute of Electrical and Electronics Engineers]
卷期号:20: 1-5 被引量:35
标识
DOI:10.1109/lgrs.2023.3243609
摘要

Accurate building extraction from very high-resolution (VHR) remote sensing images plays an important role in urban dynamic monitoring, planning, and management. However, it is still a challenging task to achieve building extraction with high accuracy and integrity due to diverse building appearances and more complex ground background in VHR remote sensing images. Recently, unity networking (UNet) has been proven to be capable of feature extraction and semantic segmentation of remote sensing images. However, UNet cannot achieve sufficient multiscale and multilevel features with larger receptive fields. To address these problems, an improved network based on UNet structure (Refine-UNet) is proposed for extracting buildings from the VHR images. The proposed Refine-UNet mainly consists of an encoder module, a decoder module, and a refine skip connection scheme. The refine skip connection scheme is composed of an atrous spatial convolutional pyramid pooling (ASPP) module and several improved depthwise separable convolution (IDSC) modules. Experimental results on the Jilin-1 VHR datasets with a spatial resolution of 0.75 m demonstrate that compared with UNet, pyramid scene parsing network (PSPNet), DeepLabV3+, and a deep convolutional encoder-decoder architecture for image segmentation (SegNet), the proposed Refine-UNet can obtain more accurate building extraction results and achieve the best precision of 95.1% and intersection over union (IoU) of 87.0%, indicating the great practical potential.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
一白完成签到 ,获得积分10
1秒前
泰勒发布了新的文献求助10
1秒前
1秒前
Brak发布了新的文献求助10
2秒前
热心柚子发布了新的文献求助10
2秒前
筷子发布了新的文献求助10
2秒前
顾矜应助Zmy采纳,获得30
2秒前
2秒前
ZY发布了新的文献求助10
2秒前
单薄落雁发布了新的文献求助10
2秒前
yyz发布了新的文献求助10
2秒前
3秒前
LZJ完成签到,获得积分10
3秒前
景天寿发布了新的文献求助10
3秒前
3秒前
小马甲应助wyj采纳,获得10
3秒前
依依完成签到 ,获得积分10
4秒前
5秒前
5秒前
6秒前
断棍豪斯完成签到,获得积分10
6秒前
神勇的萝发布了新的文献求助10
7秒前
天涯是我发布了新的文献求助10
7秒前
羅马完成签到 ,获得积分10
7秒前
carbonhan发布了新的文献求助200
8秒前
赵雪丞完成签到,获得积分10
9秒前
9秒前
断棍豪斯发布了新的文献求助10
9秒前
小章鱼发布了新的文献求助10
10秒前
小马甲应助日月同辉采纳,获得10
10秒前
难得糊涂完成签到,获得积分10
10秒前
VVhahaha完成签到,获得积分10
11秒前
bc应助自由山槐采纳,获得100
11秒前
bc应助自由山槐采纳,获得100
11秒前
无私茗发布了新的文献求助10
11秒前
乐橙完成签到 ,获得积分10
11秒前
谦让芹菜完成签到,获得积分10
11秒前
唐唐的猫咪完成签到 ,获得积分10
11秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Mobilization, center-periphery structures and nation-building 600
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Multichannel rotary joints-How they work 400
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3796339
求助须知:如何正确求助?哪些是违规求助? 3341373
关于积分的说明 10306159
捐赠科研通 3057930
什么是DOI,文献DOI怎么找? 1677992
邀请新用户注册赠送积分活动 805746
科研通“疑难数据库(出版商)”最低求助积分说明 762775