李普希茨连续性
数学
随机微分方程
数学分析
可微函数
路径(计算)
分布(数学)
变量(数学)
趋同(经济学)
空格(标点符号)
应用数学
计算机科学
经济增长
操作系统
经济
程序设计语言
标识
DOI:10.3934/dcdss.2023015
摘要
In this paper, by weak convergence method, large and moderate deviation principles are established for path-distribution-dependent stochastic differential equations. To prove large deviation principle, both of the drift and diffusion coefficients are required to be Lipschitz continuous in the space variable as well as the distribution term, uniformly with respect to the time parameter $ t $. In further, to establish the moderate deviation principle, the drift coefficient is assumed to be Frechet differentiable with Lipschitz continuous derivative in the space variable.
科研通智能强力驱动
Strongly Powered by AbleSci AI