Efficient Airlift and Enhanced Care: Unmanned Aerial Vehicles and Droid Solutions for Battlefield Casualty Evacuation

战场 计算机科学 卷积神经网络 医疗后送 战斗 航空学 计算机安全 人工智能 医疗急救 工程类 医学 古代史 历史 考古
作者
Angelina George,F Ashik,Alphonsa Jose,D. K. Niranjan
标识
DOI:10.1109/icicv62344.2024.00089
摘要

In modern military operations, timely and effective medical evacuation is crucial for reducing soldier casualties and enhancing combat effectiveness. This research presents an investigation into the use of Unmanned Aerial Vehicles (UAVs) and Droids as innovative solutions for battlefield casualty evacuation. The study explores the potential of UAVs and Droids in swiftly and accurately evacuating injured soldiers from the battlefield, providing enhanced medical care, thereby reducing casualties. By leveraging these unmanned systems, this research aims to optimize the response time and medical care quality in combat scenarios. This study has conducted a detailed assessment of the technology and potential challenges, considering various battlefield conditions and scenarios. The accuracy obtained for this study was 81.81 % , achieved through a Deep Learning model based on the MobileNetV2 architecture, a powerful Convolutional Neural Network (CNN) pre-trained on ImageNet. The results of this investigation promise to significantly impact the efficiency and safety of military medical evacuation, ultimately improving the survival rates and well-being of soldiers in the heat of battle.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小马甲应助项目多多采纳,获得20
刚刚
alna发布了新的文献求助10
刚刚
555发布了新的文献求助10
1秒前
4秒前
脑洞疼应助科研通管家采纳,获得10
6秒前
桐桐应助科研通管家采纳,获得30
6秒前
6秒前
herococa应助科研通管家采纳,获得10
6秒前
6秒前
6秒前
传奇3应助科研通管家采纳,获得10
6秒前
我是老大应助科研通管家采纳,获得10
6秒前
6秒前
完美世界应助科研通管家采纳,获得10
6秒前
alna完成签到,获得积分10
7秒前
memo应助司徒诗蕾采纳,获得10
9秒前
9秒前
Jiangzhibing发布了新的文献求助10
9秒前
my196755完成签到,获得积分10
10秒前
彩色芷完成签到,获得积分10
12秒前
12秒前
13秒前
希望天下0贩的0应助gu采纳,获得30
14秒前
luyee发布了新的文献求助10
14秒前
15秒前
鲤鱼香之完成签到,获得积分10
15秒前
15秒前
JamesPei应助zhl采纳,获得10
16秒前
16秒前
眠眠发布了新的文献求助10
17秒前
鱼囧关注了科研通微信公众号
17秒前
研友_ZlPDdZ发布了新的文献求助10
19秒前
19秒前
wk完成签到,获得积分10
19秒前
wayne完成签到,获得积分10
20秒前
曼曼发布了新的文献求助10
20秒前
ew发布了新的文献求助30
21秒前
天线完成签到,获得积分10
22秒前
李李发布了新的文献求助10
23秒前
25秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 1370
Secondary Ion Mass Spectrometry: Basic Concepts, Instrumental Aspects, Applications and Trends 1000
Comparison of adverse drug reactions of heparin and its derivates in the European Economic Area based on data from EudraVigilance between 2017 and 2021 500
[Relativity of the 5-year follow-up period as a criterion for cured cancer] 500
Statistical Analysis of fMRI Data, second edition (Mit Press) 2nd ed 500
メバロノラクトンの量産技術と皮膚老化防止効果 500
Huang‘s catheter ablation of cardiac arrthymias 5th edtion 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3939575
求助须知:如何正确求助?哪些是违规求助? 3485668
关于积分的说明 11033947
捐赠科研通 3215577
什么是DOI,文献DOI怎么找? 1777287
邀请新用户注册赠送积分活动 863420
科研通“疑难数据库(出版商)”最低求助积分说明 798829