适应(眼睛)
可靠性工程
计算机科学
可靠性理论
工程类
故障率
物理
光学
作者
Chenxi Li,Huan Wang,Te Han
标识
DOI:10.1109/tr.2024.3397913
摘要
The subdomain adaptation (SA) based intelligent cross-domain fault diagnosis methods aim to reduce the conditional distribution shift caused by variable working conditions. However, existing SA methods may be limited by the quality of pseudolabels, since misclassified pseudolabels will lead to alignment between irrelevant subdomains, resulting in erroneous category-invariant knowledge being accumulated. To tackle this, we present a dynamic subdomain pseudolabel correction and adaptation (DSPC-A) framework. Specifically, we propose an end-to-end pseudolabel correction algorithm, which integrates an auxiliary network to learn clean and general target label distribution from noisy pseudolabels. So that, the auxiliary network can guide the SA model to perform precise subdomain alignment using learned label distribution. Moreover, to allow the synergy training of the additional auxiliary network and SA model, we introduce an iterative learning strategy to dynamically perform pseudolabel correction and subdomain alignment. The iterative training makes two models complement each other, thus achieving better SA ability and diagnosis performance. The DSPC-A framework has been thoroughly verified under three fault diagnostic scenarios: cross load, cross fault severity, and cross mechanical equipment. Case study results demonstrate the superiority of the DSPC-A, which improves the SA performance by solely implementing simple pseudolabel correction methods without other complex techniques.
科研通智能强力驱动
Strongly Powered by AbleSci AI