Parallel CNN‐Deep Learning Clinical‐Imaging Signature for Assessing Pathologic Grade and Prognosis of Soft Tissue Sarcoma Patients

软组织 肉瘤 软组织肉瘤 医学 放射科 病理 签名(拓扑) 几何学 数学
作者
Jia Guo,Yiming Li,Hongwei Guo,Dapeng Hao,Jing‐xu Xu,Chencui Huang,Hua‐wei Han,Feng Hou,Shifeng Yang,Jianling Cui,He‐xiang Wang
出处
期刊:Journal of Magnetic Resonance Imaging [Wiley]
卷期号:61 (2): 807-819 被引量:5
标识
DOI:10.1002/jmri.29474
摘要

Background Traditional biopsies pose risks and may not accurately reflect soft tissue sarcoma (STS) heterogeneity. MRI provides a noninvasive, comprehensive alternative. Purpose To assess the diagnostic accuracy of histological grading and prognosis in STS patients when integrating clinical‐imaging parameters with deep learning (DL) features from preoperative MR images. Study Type Retrospective/prospective. Population 354 pathologically confirmed STS patients (226 low‐grade, 128 high‐grade) from three hospitals and the Cancer Imaging Archive (TCIA), divided into training ( n = 185), external test (n = 125), and TCIA cohorts ( n = 44). 12 patients (6 low‐grade, 6 high‐grade) were enrolled into prospective validation cohort. Field Strength/Sequence 1.5 T and 3.0 T/Unenhanced T1‐weighted and fat‐suppressed‐T2‐weighted. Assessment DL features were extracted from MR images using a parallel ResNet‐18 model to construct DL signature. Clinical‐imaging characteristics included age, gender, tumor‐node‐metastasis stage and MRI semantic features (depth, number, heterogeneity at T1WI/FS‐T2WI, necrosis, and peritumoral edema). Logistic regression analysis identified significant risk factors for the clinical model. A DL clinical‐imaging signature (DLCS) was constructed by incorporating DL signature with risk factors, evaluated for risk stratification, and assessed for progression‐free survival (PFS) in retrospective cohorts, with an average follow‐up of 23 ± 22 months. Statistical Tests Logistic regression, Cox regression, Kaplan–Meier curves, log‐rank test, area under the receiver operating characteristic curve (AUC),and decision curve analysis. A P ‐value <0.05 was considered significant. Results The AUC values for DLCS in the external test, TCIA, and prospective test cohorts (0.834, 0.838, 0.819) were superior to clinical model (0.662, 0.685, 0.694). Decision curve analysis showed that the DLCS model provided greater clinical net benefit over the DL and clinical models. Also, the DLCS model was able to risk‐stratify patients and assess PFS. Data Conclusion The DLCS exhibited strong capabilities in histological grading and prognosis assessment for STS patients, and may have potential to aid in the formulation of personalized treatment plans. Level of Evidence 4. Technical Efficacy Stage 2.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
相思发布了新的文献求助10
刚刚
木云完成签到,获得积分10
刚刚
诚心的傲芙完成签到,获得积分10
1秒前
1秒前
5433完成签到 ,获得积分10
2秒前
2秒前
2秒前
2秒前
张金漫完成签到,获得积分20
3秒前
7秒前
果汁橡皮糖完成签到,获得积分10
7秒前
xiaoyuyuyu完成签到 ,获得积分10
7秒前
7秒前
moaner发布了新的文献求助10
8秒前
9秒前
搜集达人应助小丁采纳,获得10
9秒前
充电宝应助小鱼采纳,获得10
9秒前
RE完成签到 ,获得积分10
10秒前
Lucas应助HY采纳,获得10
10秒前
优雅绮波完成签到 ,获得积分10
11秒前
烟花应助huangchenxi采纳,获得30
12秒前
Ffff完成签到,获得积分10
14秒前
饶凯旋发布了新的文献求助10
15秒前
烟花应助猫也不知道采纳,获得10
15秒前
gavin发布了新的文献求助10
15秒前
xrrrr完成签到,获得积分10
15秒前
楠沅完成签到,获得积分10
15秒前
王子琦完成签到,获得积分10
17秒前
18秒前
18秒前
科研王完成签到 ,获得积分10
18秒前
Neko发布了新的文献求助10
19秒前
19秒前
王天天完成签到 ,获得积分10
20秒前
爱吃姜的面条完成签到,获得积分10
21秒前
gzgljh完成签到,获得积分10
21秒前
moaner完成签到,获得积分10
22秒前
huhdcid发布了新的文献求助30
22秒前
22秒前
神勇的罡完成签到,获得积分10
23秒前
高分求助中
Encyclopedia of Quaternary Science Third edition 2025 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Beyond the sentence : discourse and sentential form / edited by Jessica R. Wirth 600
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
Reliability Monitoring Program 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5339603
求助须知:如何正确求助?哪些是违规求助? 4476342
关于积分的说明 13931317
捐赠科研通 4371894
什么是DOI,文献DOI怎么找? 2402155
邀请新用户注册赠送积分活动 1395071
关于科研通互助平台的介绍 1367068