台风
计算机科学
互动性
过程(计算)
服务(商务)
集合(抽象数据类型)
本体论
人工智能
数据库
情报检索
万维网
气象学
哲学
物理
经济
认识论
经济
程序设计语言
操作系统
作者
Yongqi Xia,Yi Huang,Qianqian Qiu,Xueying Zhang,Lizhi Miao,Yixiang Chen
摘要
A typhoon disaster is a common meteorological disaster that seriously impacts natural ecology, social economy, and even human sustainable development. It is crucial to access the typhoon disaster information, and the corresponding disaster prevention and reduction strategies. However, traditional question and answering (Q&A) methods exhibit shortcomings like low information retrieval efficiency and poor interactivity. This makes it difficult to satisfy users’ demands for obtaining accurate information. Consequently, this work proposes a typhoon disaster knowledge Q&A approach based on LLM (T5). This method integrates two technical paradigms of domain fine-tuning and retrieval-augmented generation (RAG) to optimize user interaction experience and improve the precision of disaster information retrieval. The process specifically includes the following steps. First, this study selects information about typhoon disasters from open-source databases, such as Baidu Encyclopedia and Wikipedia. Utilizing techniques such as slicing and masked language modeling, we generate a training set and 2204 Q&A pairs specifically focused on typhoon disaster knowledge. Second, we continuously pretrain the T5 model using the training set. This process involves encoding typhoon knowledge as parameters in the neural network’s weights and fine-tuning the pretrained model with Q&A pairs to adapt the T5 model for downstream Q&A tasks. Third, when responding to user queries, we retrieve passages from external knowledge bases semantically similar to the queries to enhance the prompts. This action further improves the response quality of the fine-tuned model. Finally, we evaluate the constructed typhoon agent (Typhoon-T5) using different similarity-matching approaches. Furthermore, the method proposed in this work lays the foundation for the cross-integration of large language models with disaster information. It is expected to promote the further development of GeoAI.
科研通智能强力驱动
Strongly Powered by AbleSci AI