When and where to step: Terrain-aware real-time footstep location and timing optimization for bipedal robots

计算机科学 地形 机器人 实时计算 人工智能 计算机视觉 模拟 嵌入式系统 人机交互 生态学 生物
作者
Ke Wang,Zhaoyang Jacopo Hu,Peter Tisnikar,Oskar Helander,Digby Chappell,Petar Kormushev
出处
期刊:Robotics and Autonomous Systems [Elsevier BV]
卷期号:179: 104742-104742
标识
DOI:10.1016/j.robot.2024.104742
摘要

Online footstep planning is essential for bipedal walking robots, allowing them to walk in the presence of disturbances and sensory noise. Most of the literature on the topic has focused on optimizing the footstep placement while keeping the step timing constant. In this work, we introduce a footstep planner capable of optimizing footstep placement and step time online. The proposed planner, consisting of an Interior Point Optimizer (IPOPT) and an optimizer based on Augmented Lagrangian (AL) method with analytical gradient descent, solves the full dynamics of the Linear Inverted Pendulum (LIP) model in real time to optimize for footstep location as well as step timing at the rate of 200 Hz. We show that such asynchronous real-time optimization with the AL method (ARTO-AL) provides the required robustness and speed for successful online footstep planning. Furthermore, ARTO-AL can be extended to plan footsteps in 3D, allowing terrain-aware footstep planning on uneven terrains. Compared to an algorithm with no footstep time adaptation, our proposed ARTO-AL demonstrates increased stability in simulated walking experiments as it can resist pushes on flat ground and on a 10° ramp up to 120 N and 100 N respectively. Videos2 and open-source code3 are released.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
dragonking520完成签到 ,获得积分10
2秒前
学医自救完成签到,获得积分10
2秒前
3秒前
李爱国应助云宝采纳,获得10
4秒前
LIN完成签到,获得积分10
4秒前
5秒前
ZZ完成签到,获得积分10
6秒前
Lin2019发布了新的文献求助10
8秒前
Healer完成签到 ,获得积分10
9秒前
期遇完成签到 ,获得积分10
9秒前
gaogaogao完成签到,获得积分10
9秒前
小雨完成签到,获得积分10
9秒前
小鱼儿发布了新的文献求助10
9秒前
屿杓发布了新的文献求助10
10秒前
10秒前
Green完成签到,获得积分10
10秒前
tttt完成签到 ,获得积分10
13秒前
13秒前
陈十八应助风清扬采纳,获得30
14秒前
14秒前
科目三应助lieditongxu采纳,获得10
15秒前
bkagyin应助平常心采纳,获得10
16秒前
Ava应助落枫流年采纳,获得10
16秒前
云宝发布了新的文献求助10
17秒前
17秒前
小巧的柏柳完成签到 ,获得积分10
18秒前
19秒前
粉条发布了新的文献求助10
21秒前
Max108完成签到,获得积分10
22秒前
朱博完成签到,获得积分10
22秒前
科研通AI5应助开放的大侠采纳,获得10
23秒前
23秒前
星star完成签到 ,获得积分10
24秒前
拼搏亦松发布了新的文献求助30
24秒前
lieditongxu发布了新的文献求助10
28秒前
科研通AI5应助uo采纳,获得10
29秒前
31秒前
32秒前
高分求助中
Applied Survey Data Analysis (第三版, 2025) 800
Narcissistic Personality Disorder 700
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
The Elgar Companion to Consumer Behaviour and the Sustainable Development Goals 540
Dietary intake and glutamine-serine metabolism control pathologic vascular stiffness 500
The Martian climate revisited: atmosphere and environment of a desert planet 500
Transnational East Asian Studies 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3845261
求助须知:如何正确求助?哪些是违规求助? 3387415
关于积分的说明 10549319
捐赠科研通 3108109
什么是DOI,文献DOI怎么找? 1712456
邀请新用户注册赠送积分活动 824404
科研通“疑难数据库(出版商)”最低求助积分说明 774776