Using Chemistry To Recreate the Complexity of the Extracellular Matrix: Guidelines for Supramolecular Hydrogel–Cell Interactions

化学 超分子化学 细胞外基质 基质(化学分析) 生物物理学 纳米技术 分子 有机化学 生物化学 色谱法 材料科学 生物
作者
Laura Rijns,Matthew B. Baker,Patricia Y. W. Dankers
出处
期刊:Journal of the American Chemical Society [American Chemical Society]
卷期号:146 (26): 17539-17558 被引量:18
标识
DOI:10.1021/jacs.4c02980
摘要

Hydrogels have emerged as a promising class of extracellular matrix (ECM)-mimicking materials in regenerative medicine. Here, we briefly describe current state-of-the-art of ECM-mimicking hydrogels, ranging from natural to hybrid to completely synthetic versions, giving the prelude to the importance of supramolecular interactions to make true ECM mimics. The potential of supramolecular interactions to create ECM mimics for cell culture is illustrated through a focus on two different supramolecular hydrogel systems, both developed in our laboratories. We use some recent, significant findings to present important design principles underlying the cell–material interaction. To achieve cell spreading, we propose that slow molecular dynamics (monomer exchange within fibers) is crucial to ensure the robust incorporation of cell adhesion ligands within supramolecular fibers. Slow bulk dynamics (stress–relaxation─fiber rearrangements, τ1/2 ≈ 1000 s) is required to achieve cell spreading in soft gels (<1 kPa), while gel stiffness overrules dynamics in stiffer gels. Importantly, this resonates with the findings of others which specialize in different material types: cell spreading is impaired in case substrate relaxation occurs faster than clutch binding and focal adhesion lifetime. We conclude with discussing considerations and limitations of the supramolecular approach as well as provide a forward thinking perspective to further understand supramolecular hydrogel–cell interactions. Future work may utilize the presented guidelines underlying cell–material interactions to not only arrive at the next generation of ECM-mimicking hydrogels but also advance other fields, such as bioelectronics, opening up new opportunities for innovative applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
乐乐应助pantutu采纳,获得10
刚刚
幽默不乐完成签到,获得积分20
刚刚
sci发布了新的文献求助10
1秒前
1秒前
笨鸟先飞发布了新的文献求助10
1秒前
1秒前
852应助123采纳,获得10
1秒前
Wiliam完成签到,获得积分10
2秒前
2秒前
思源应助爱学习采纳,获得10
3秒前
4秒前
4秒前
Chen应助于于于采纳,获得20
4秒前
明芷蝶应助十月采纳,获得20
5秒前
lyq完成签到,获得积分20
6秒前
科研通AI5应助Ytion采纳,获得10
6秒前
科研通AI2S应助飞云采纳,获得10
6秒前
按时顺利毕业完成签到,获得积分10
6秒前
阳仔完成签到,获得积分10
6秒前
7秒前
7秒前
千逐完成签到,获得积分10
7秒前
盐植物发布了新的文献求助10
7秒前
7秒前
含糊的清完成签到,获得积分10
7秒前
LILILI完成签到,获得积分10
7秒前
8秒前
8秒前
zuol发布了新的文献求助10
8秒前
8秒前
9秒前
Sissi发布了新的文献求助30
9秒前
天真思雁完成签到 ,获得积分20
10秒前
10秒前
十月完成签到,获得积分10
11秒前
11秒前
EvaHo完成签到,获得积分10
11秒前
马冬梅发布了新的文献求助10
11秒前
11秒前
复杂惜霜发布了新的文献求助10
11秒前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Treatise on Ocular Drug Delivery 200
studies in large plastic flow and fructure 200
New Syntheses with Carbon Monoxide 200
Quanterion Automated Databook NPRD-2023 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3834665
求助须知:如何正确求助?哪些是违规求助? 3377161
关于积分的说明 10496785
捐赠科研通 3096583
什么是DOI,文献DOI怎么找? 1705068
邀请新用户注册赠送积分活动 820438
科研通“疑难数据库(出版商)”最低求助积分说明 772031