Mapping paleostress trajectories by means of the clustering of reduced stress tensors determined from homogeneous and heterogeneous data sets

地质学 同种类的 聚类分析 压力(语言学) 矿物学 几何学 数学 统计 组合数学 哲学 语言学
作者
Atsushi Yamaji,Ken-ichiro Honma,Shin Koshiya
出处
期刊:Journal of Structural Geology [Elsevier BV]
卷期号:185: 105186-105186
标识
DOI:10.1016/j.jsg.2024.105186
摘要

It is easy to draw stress trajectories to investigate the present stress field by interpolating stress orientations determined at control points. However, challenges arise when we deal with the trajectories of paleostresses, because neighboring control points may have the stress orientations of different tectonic phases. We must choose coeval stresses to draw the trajectories. Recent stress inversion techniques can separate stresses from heterogeneous data from fault, dilational fractures, etc. Natural data sets from those structures are often heterogeneous, and age data are usually not enough to classify the stresses by age. As a result, an unsupervised classification problem of the inversion results must be solved to draw the trajectories. Here, we propose a simple and heuristic procedure for this problem. We assume smooth trajectories during each of the phases. The smoothness makes density-based clustering adoptable to solve the problem. The heterogeneity of data sets allows the additional partition of the clusters. As a worked exercise for this technique, the trajectories of minimum horizontal stress orientations were drawn based on the paleostresses determined from the attitudes of felsic dikes and quartz veins formed in mid Cretaceous orogeny in the North Kitakami Terrain, northern Japan. The orogen-parallel and orogen-perpendicular extensional stress fields delineated by the present technique were probably the manifestations, respectively, of the gravitational collapse of the orogen and of regional extensional tectonics in the Far East.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
CCC完成签到,获得积分10
刚刚
墨之默完成签到,获得积分10
1秒前
ori完成签到,获得积分10
1秒前
初遇之时最暖完成签到,获得积分10
2秒前
Shaun完成签到,获得积分10
2秒前
sherry完成签到,获得积分10
2秒前
3秒前
懒羊羊完成签到,获得积分20
4秒前
4秒前
楼不正完成签到,获得积分10
4秒前
哈哈哈哈发布了新的文献求助10
5秒前
程大海完成签到,获得积分10
5秒前
alc完成签到,获得积分10
5秒前
李健的粉丝团团长应助1111采纳,获得10
6秒前
爷叶完成签到,获得积分20
7秒前
aaa完成签到,获得积分10
8秒前
8秒前
不安的奇异果完成签到 ,获得积分20
8秒前
陈默完成签到 ,获得积分10
9秒前
Xu发布了新的文献求助200
10秒前
tu123完成签到,获得积分10
10秒前
断水断粮的科研民工完成签到,获得积分10
11秒前
假装有昵称完成签到,获得积分10
11秒前
鹏N完成签到,获得积分10
11秒前
不安的若完成签到,获得积分20
12秒前
小城故事和冰雨完成签到,获得积分10
12秒前
星野爱完成签到,获得积分10
12秒前
来日昭昭应助foceman采纳,获得10
13秒前
炙热的雨旋完成签到,获得积分10
13秒前
yanyimeng完成签到,获得积分10
14秒前
赎罪完成签到 ,获得积分10
14秒前
华仔应助开开开采纳,获得10
15秒前
DezhaoWang完成签到,获得积分10
15秒前
JK157完成签到,获得积分10
16秒前
16秒前
DrW完成签到,获得积分10
16秒前
bob完成签到,获得积分10
16秒前
可飞完成签到,获得积分10
16秒前
AoAoo完成签到,获得积分10
17秒前
18秒前
高分求助中
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 1200
Deutsche in China 1920-1950 1200
Applied Survey Data Analysis (第三版, 2025) 850
Electron microscopy study of magnesium hydride (MgH2) for Hydrogen Storage 800
Learning to Listen, Listening to Learn 570
The Psychology of Advertising (5th edition) 550
Research on the design of hear-through controllers for active noise control headphones based on cascade biquad filters considering different directions of sound arrivals 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3872039
求助须知:如何正确求助?哪些是违规求助? 3414026
关于积分的说明 10687348
捐赠科研通 3138464
什么是DOI,文献DOI怎么找? 1731707
邀请新用户注册赠送积分活动 834943
科研通“疑难数据库(出版商)”最低求助积分说明 781493