Classification of ULK1 inhibitors and SAR analysis by machine learning methods

ULK1 计算机科学 人工智能 计算生物学 机器学习 化学 生物化学 生物 激酶 蛋白激酶A 安普克
作者
Xiao Wang,Huachun Yin,Aixia Yan
出处
期刊:Sar and Qsar in Environmental Research [Informa]
卷期号:36 (6): 463-485
标识
DOI:10.1080/1062936x.2025.2521295
摘要

Unc-51 like kinase 1 (ULK1), a key regulator of autophagy initiation, is a novel target for anticancer drug design. In this work, we collected 846 ULK1 inhibitors with IC50 values from 30 references. Based on ECFP_4, MACCS fingerprints, and Mordred descriptors, we established a list of classification models by using Support Vector Machine (SVM), Random Forest (RF), extreme Gradient Boosting (XGBoost) and Deep Neural Networks (DNN). Additionally, several Fingerprint and Graph Neural Network (FP-GNN) models were also constructed using mixed molecular fingerprints and molecular graph. A total of 39 classification models were developed. Model_1D_1, an ECFP4-based DNN model, performed the best, achieving accuracies over 95% and Matthews correlation coefficient (MCC) over 0.9 on both validation and test sets. The applicability domain calculated by weighted Euclidean distance indicated that Model_1D_1 could reliably predict the activity for over 84% compounds in both training and test sets. We conducted structure-activity relationship (SAR) analysis through K-means and SHAP. The dataset's molecular structures were classified into 7 subsets by K-means clustering. We identified three high-activity subsets sharing a common scaffold, 2-amino-4-(2-thienyl)-5-(trifluoromethyl)pyrimidine. SHAP analysis highlighted critical molecular fragments influencing activity, enhancing our understanding of model predictions and providing a theoretical basis for optimizing ULK1 inhibitors.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
蔺蔺发布了新的文献求助10
1秒前
1秒前
廉6666发布了新的文献求助20
1秒前
xiaoxiang完成签到,获得积分10
2秒前
满意绝音发布了新的文献求助10
2秒前
3秒前
3秒前
3秒前
4秒前
量子星尘发布了新的文献求助10
4秒前
4秒前
5秒前
852应助森林采纳,获得10
5秒前
背侧丘脑完成签到,获得积分20
5秒前
sdsff完成签到,获得积分10
5秒前
6秒前
wanci应助晏清采纳,获得10
6秒前
小蜗爬爬完成签到 ,获得积分10
6秒前
今后应助闪闪明轩采纳,获得10
6秒前
文献属于所有科研人完成签到 ,获得积分10
7秒前
7秒前
8秒前
8秒前
落日出逃发布了新的文献求助10
8秒前
9秒前
晓竹发布了新的文献求助10
9秒前
WZ0904发布了新的文献求助10
9秒前
123完成签到,获得积分10
9秒前
兴奋奇异果完成签到,获得积分10
11秒前
12秒前
点点完成签到 ,获得积分10
12秒前
12秒前
12秒前
青苔完成签到,获得积分10
13秒前
14秒前
14秒前
浮游应助元谷雪采纳,获得10
14秒前
14秒前
zmm完成签到 ,获得积分10
14秒前
干净冬莲完成签到,获得积分10
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 6000
Real World Research, 5th Edition 680
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 660
Superabsorbent Polymers 600
Handbook of Migration, International Relations and Security in Asia 555
A retrospective multi-center chart review study on the timely administration of systemic corticosteroids in children with moderate-to-severe asthma exacerbations 510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5678698
求助须知:如何正确求助?哪些是违规求助? 4984113
关于积分的说明 15165402
捐赠科研通 4838561
什么是DOI,文献DOI怎么找? 2592550
邀请新用户注册赠送积分活动 1545839
关于科研通互助平台的介绍 1503991