纳米尺度
铁电性
纳米技术
薄膜
材料科学
格子(音乐)
静电学
化学物理
化学
光电子学
物理
物理化学
电介质
声学
作者
İpek Efe,Alexander Vogel,William S. Huxter,Elzbieta Gradauskaite,Iaroslav Gaponenko,Patrycja Paruch,Christian L. Degen,Marta D. Rossell,M. Fiebig,Morgan Trassin
标识
DOI:10.1038/s41467-025-60176-8
摘要
Nanoscale electrostatic control of oxide interfaces enables physical phenomena and exotic functionalities beyond the realm of the bulk material. In technologically-relevant ferroelectric thin films, the interface-mediated polarization control is usually exerted by engineering the depolarizing field. Here, in contrast, we introduce polarizing surfaces and lattice chemistry engineering as an alternative strategy. Specifically, we engineer the electric-dipole ordering in ferroelectric oxide heterostructures by exploiting the charged sheets of the layered Aurivillius model system. By tracking in-situ the formation of the Aurivillius charged Bi2O2 sheets, we reveal their polarizing effect leading to the characteristic Aurivillius out-of-plane antipolar ordering. Next, we use the polarizing Bi2O2 stacking as a versatile electrostatic environment to create new electric dipole configurations. We insert multiferroic BiFeO3 into the Aurivillius framework to stabilize a ferrielectric-like non-collinear electric-dipole order in the final heterostructure while maintaining the antiferromagnetic order of BiFeO3. We thus demonstrate that engineering the lattice chemistry stabilizes unconventional ferroic orderings at the nanoscale, a strategy that may be expanded beyond the realm of electrically ordered materials.
科研通智能强力驱动
Strongly Powered by AbleSci AI