Imaging Based Surgical Site Infection Detection Using Artificial Intelligence

医学 急诊分诊台 外科 急诊医学
作者
Hala Muaddi,Ashok Choudhary,Frank Lee,Stephanie Anderson,Elizabeth B. Habermann,David A. Etzioni,Sarah A. McLaughlin,Michael L. Kendrick,Hojjat Salehinejad,Cornelius A. Thiels
出处
期刊:Annals of Surgery [Lippincott Williams & Wilkins]
标识
DOI:10.1097/sla.0000000000006826
摘要

Objective: To develop an AI-based pipeline to assess and triage patient-submitted postoperative wound images. Background: The rise of outpatient surgeries, remote monitoring, and patient-submitted wound images via online portals has contributed to a growing administrative workload on clinicians. Early identification of surgical site infection (SSI) is essential for reducing postoperative morbidity. Methods: Patients ≥18 years old who underwent surgery at nine affiliated Mayo Clinic hospitals (2019-2022) and were captured by National Surgical Quality Improvement Program (NSQIP) were included. Eligibility required submission of one image via the patient portal within 30-days post-surgery. Images were independently screened in duplicate to determine the presence of an incision. SSI outcomes were obtained from NSQIP. The developed model consisted of two stages: incision detection and SSI detection in images with incisions. Four pretrained architectures were evaluated using 10-fold cross-validation, with upsampling and data augmentation to mitigate class imbalance. An end-to-end pipeline, image quality assessment and sensitivity analysis stratified by race were also performed. Results: Among 6,060 patients, the median age was 54 years (IQR 40-65), 61.4% were (n=3,805) female, and 92.5% (n=5,731) identified as white. SSIs were confirmed in 6.2% (n=386) images. Vision Transformer outperformed all others, achieving an incision detection accuracy of 0.94 (AUC 0.98) and an SSI detection accuracy of 0.73 (AUC 0.81). In addition, it demonstrated strong performance in assessing image quality. Sensitivity analysis revealed comparable performance across racial subgroups. Conclusion: This AI pipeline demonstrates promising performance in automating wound images assessment and SSI detection, reducing clinical workload and improving postoperative care.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
矮小的振家完成签到,获得积分10
1秒前
sweetsbt完成签到,获得积分10
1秒前
一顿鸡米花完成签到,获得积分10
2秒前
linhuom发布了新的文献求助10
5秒前
7秒前
Psr发布了新的文献求助10
7秒前
7秒前
桥抱千嶂完成签到,获得积分10
8秒前
桥抱千嶂发布了新的文献求助10
11秒前
希望天下0贩的0应助Psr采纳,获得10
12秒前
海浪发布了新的文献求助10
13秒前
Lucifer完成签到,获得积分10
17秒前
Psr完成签到,获得积分20
17秒前
梨花雨凉发布了新的文献求助10
18秒前
兔兔sci完成签到,获得积分10
19秒前
隐形曼青应助杨阳洋采纳,获得10
22秒前
充电宝应助仁爱柠檬采纳,获得10
23秒前
赘婿应助杨梅汤采纳,获得10
25秒前
25秒前
26秒前
29秒前
30秒前
wylwyl发布了新的文献求助10
30秒前
32秒前
linhuom发布了新的文献求助10
32秒前
杨阳洋发布了新的文献求助10
34秒前
Ava应助梨花雨凉采纳,获得10
35秒前
35秒前
小熊猫完成签到,获得积分10
36秒前
今后应助jiahao采纳,获得10
37秒前
38秒前
科研通AI6应助cocopan采纳,获得10
39秒前
小昭发布了新的文献求助10
42秒前
huanglu完成签到 ,获得积分10
43秒前
科研通AI6应助兔兔sci采纳,获得10
44秒前
47秒前
小昭完成签到,获得积分10
47秒前
Owen应助Andrew采纳,获得10
48秒前
班小班完成签到,获得积分10
51秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Rapid Review of Electrodiagnostic and Neuromuscular Medicine: A Must-Have Reference for Neurologists and Physiatrists 1000
The Handbook of Communication Skills 500
求中国石油大学(北京)图书馆的硕士论文,作者董晨,十年前搞太赫兹的 500
Narrative Method and Narrative form in Masaccio's Tribute Money 500
基于3um sOl硅光平台的集成发射芯片关键器件研究 500
Educational Research: Planning, Conducting, and Evaluating Quantitative and Qualitative Research 460
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4791843
求助须知:如何正确求助?哪些是违规求助? 4114911
关于积分的说明 12729645
捐赠科研通 3842466
什么是DOI,文献DOI怎么找? 2118176
邀请新用户注册赠送积分活动 1140417
关于科研通互助平台的介绍 1028446