亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Development and validation of a prediction model for lymph node metastasis in thyroid cancer: integrating deep learning and radiomics features from intra- and peri-tumoral regions

医学 无线电技术 癌症 转移 淋巴结转移 淋巴结 甲状腺癌 佩里 深度学习 人工智能 病理 内科学 放射科 计算机科学
作者
Lichang Zhong,Shi Lin,Xinlan Liu,Yanna Zhao,Liping Gu,Wenkun Bai,Yuanyi Zheng
出处
期刊:Gland surgery [AME Publishing Company]
卷期号:14 (7): 1272-1282
标识
DOI:10.21037/gs-2025-50
摘要

Current preoperative imaging methods, such as ultrasound, are limited by operator dependency and suboptimal sensitivity for detecting central lymph node metastasis (CLNM). This study aimed to propose a method that integrates deep learning and radiomics to accurately predict lymph node metastasis in thyroid cancer by analyzing intra- and peri-tumoral imaging features, thereby improving the preoperative prediction accuracy. From July 2020 to June 2022, 405 patients diagnosed with PTC were enrolled from two centers: Center 1 (Shanghai Sixth People's Hospital) with 294 patients divided into a training set (n=294) and an internal validation set, and Center 2 (Tongji Hospital Affiliated to Tongji University) with 111 patients as the external test set. Postoperative pathological confirmation served as the reference standard for CLNM diagnosis. A total of 1,561 radiomics features and 2,048 deep learning features were extracted from intra- and peri-tumoral regions of each ultrasound image. Feature selection was performed using analysis of variance (ANOVA) and least absolute shrinkage and selection operator (LASSO), resulting in the selection of relevant features for constructing support vector machine (SVM) models. Additionally, radiomics-deep learning fusion models were developed by combining selected radiomics and deep learning features. Among 405 patients (mean age: 46.59±12.74 years; 68.6% female), 171 exhibited CLNM, highlighting the clinical urgency for accurate prediction. Among the 405 patients, 171 exhibited CLNM. The radiomics models demonstrated area under the curve (AUC) values of 0.760 in internal validation and 0.748 in the external test cohort. The deep learning models demonstrated improved performance with AUCs of 0.794 and 0.756 in the internal and external test sets. Notably, the highest AUC values of 0.897 (internal validation) and 0.881 (external test set) were obtained by the radiomics-deep learning fusion SVM model incorporating both intra- and peri-tumoral regions. DeLong's test confirmed statistically significant improvements (P<0.05) of the fusion model over the intra-tumoral radiomics model (P=0.008), intra-tumoral deep learning model (P=0.005), and combined intra-tumoral radiomics-deep learning model (P=0.01). However, no significant differences were observed compared to the combined intra- and peri-tumoral deep learning model (P=0.17). Decision curve analysis indicated that the fusion model offers greater clinical utility in predicting CLNM. The integration of radiomics and deep learning features significantly enhances the diagnostic performance for predicting CLNM in papillary thyroid carcinoma (PTC). The radiomics-deep learning fusion SVM model outperforms individual radiomics and deep learning models, demonstrating substantial potential for clinical application in improving surgical decision-making and patient management. The fusion model could reduce unnecessary central lymph node dissections (CLNDs) and improve surgical planning by providing personalized risk stratification.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
善学以致用应助Logan采纳,获得10
23秒前
25秒前
fhw完成签到 ,获得积分10
26秒前
扬大小汤发布了新的文献求助10
32秒前
扬大小汤完成签到,获得积分10
37秒前
1分钟前
Owen应助科研通管家采纳,获得10
1分钟前
1分钟前
1分钟前
1分钟前
lxfthu发布了新的文献求助10
1分钟前
1分钟前
妙手回春板蓝根完成签到,获得积分10
1分钟前
俭朴山灵完成签到 ,获得积分10
1分钟前
Logan发布了新的文献求助10
1分钟前
cokevvv发布了新的文献求助10
1分钟前
Logan完成签到,获得积分10
1分钟前
所所应助cokevvv采纳,获得10
2分钟前
2分钟前
Krim完成签到 ,获得积分0
2分钟前
2分钟前
2分钟前
小红书求接接接接一篇完成签到,获得积分10
3分钟前
00111100应助安逸采纳,获得10
4分钟前
淀粉肠完成签到 ,获得积分10
4分钟前
lzy完成签到,获得积分10
5分钟前
Hayat发布了新的文献求助20
5分钟前
从容芮完成签到,获得积分0
6分钟前
科研fw完成签到 ,获得积分10
7分钟前
aikeyan完成签到 ,获得积分10
7分钟前
犹豫疾完成签到,获得积分10
7分钟前
夜行完成签到,获得积分10
8分钟前
Hayat发布了新的文献求助20
8分钟前
Roc关注了科研通微信公众号
8分钟前
小蘑菇应助细腻烙采纳,获得10
8分钟前
8分钟前
XuChaogang发布了新的文献求助30
9分钟前
9分钟前
9分钟前
cokevvv发布了新的文献求助10
9分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Solid-Liquid Interfaces 600
A study of torsion fracture tests 510
Narrative Method and Narrative form in Masaccio's Tribute Money 500
Aircraft Engine Design, Third Edition 500
Neonatal and Pediatric ECMO Simulation Scenarios 500
苏州地下水中新污染物及其转化产物的非靶向筛查 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4753523
求助须知:如何正确求助?哪些是违规求助? 4097855
关于积分的说明 12678657
捐赠科研通 3811051
什么是DOI,文献DOI怎么找? 2104067
邀请新用户注册赠送积分活动 1129256
关于科研通互助平台的介绍 1006497