材料科学
无定形固体
析氧
氧气
化学工程
层状双氢氧化物
无机化学
碱性电池
冶金
化学
电化学
结晶学
电解质
氢氧化物
物理化学
有机化学
电极
工程类
作者
Teng Wang,Hao Wei,Renquan Hu,Nannan Liang,Zhen Sun,Jiaqian Qin,Mingchuan Luo,Yong Yang
出处
期刊:PubMed
日期:2025-09-15
标识
DOI:10.1021/acsnano.5c09887
摘要
Crystalline-amorphous (c-a) heterointerfaces are a promising strategy to upgrade nanomaterials for catalysis. However, achieving precise control over c-a heterointerfaces at the subnanometer (subnm) scale for maximizing catalytic sites remains a formidable challenge. Here, we report a dual ligand-assisted synthesis strategy to engineer a hierarchically c-a heterostructure on subnanometer NiFe hydroxide, synergizing atomic-scale structural refinement with interfacial optimization for enhanced oxygen evolution reaction (OER) performance. Through the selective selenization of unstable edge sites in amorphous materials, the resulting crystalline Ni0.85Se@amorphous NiFe hydroxide catalysts, featuring edge-enriched Ni0.85Se domains and mismatched crystalline-amorphous heterointerfaces, deliver exceptional OER activity with an ultralow overpotential of 225 mV at 10 mA cm-2, surpassing most state-of-the-art NiFe-based catalysts. Spectroscopic techniques and theoretical calculations reveal that the crystalline Ni0.85Se outer layer modulates the d-band center of Ni/Fe active sites, enhances charge transfer kinetics, and optimizes oxygen intermediate adsorption, thereby accelerating the OER process. Furthermore, in the anion exchange membrane water electrolyzer (AEMWE), standout performance with an ultralow cell voltage of 1.78 V at a current density of 1.0 A cm-2 is achieved. This work establishes a universal blueprint for integrating atomic-level structural design with interfacial engineering to unlock high-performance c-a heterocatalysts for energy conversion technologies.
科研通智能强力驱动
Strongly Powered by AbleSci AI