Diagnostic and prognostic multimodal prediction models in Alzheimer's disease: A scoping review

痴呆 预测建模 接收机工作特性 机器学习 计算机科学 人工智能 疾病 医学 内科学
作者
Xin Xia,Lukas Duffner,Christophe Bintener,Angela C. Bradshaw,Daphné Lamirel,Linus Jönsson
出处
期刊:Journal of Alzheimer's Disease [IOS Press]
标识
DOI:10.1177/13872877251351630
摘要

Background Multimodal prediction models for Alzheimer's disease (AD) are emerging as promising tools for improving detection and informing prognosis. Objective To summarize the predictive objectives, constituting predictors and algorithms, and performance of existing multimodal prediction models. Methods We performed a systematic literature search in Medline, Embase, and Web of Science up to January 15, 2024, to identify prediction models covering the full spectrum of AD, from the preclinical stage to subjective cognitive decline (SCD), mild cognitive impairment (MCI), and AD dementia. The predictors, algorithms, and model performance of prediction models were summarized narratively by their predictive objectives. The review protocol was registered with the Open Science Framework (osf.io/zkw6g). Results Predicting the future progression from MCI to AD dementia was the most common objective of prediction models for AD. The second most common objective was to classify AD stages (SCD versus MCI versus AD dementia), followed by detecting the presence of amyloid, tau, or neurodegeneration. More than half of the prediction models reported an area under the receiver operating characteristic curve exceeding 0.8 and an accuracy exceeding 70%. However, 66.7% of the prediction models were developed using data from the ADNI study, and only 10.1% of the models went through external validation. Conclusions Existing multimodal prediction models have mainly focused on the prediction of current or future AD stages and reported good performance. However, these models need to be validated using data other than the data used for model training before being considered for practical applications.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
虚心岂愈发布了新的文献求助10
1秒前
1秒前
何熙熙完成签到,获得积分10
1秒前
麝狸猫完成签到,获得积分10
2秒前
2秒前
刚子发布了新的文献求助10
2秒前
Gavin发布了新的文献求助10
3秒前
xuxingjie完成签到,获得积分10
3秒前
4秒前
故意不上钩的鱼应助Vena采纳,获得10
7秒前
8秒前
量子星尘发布了新的文献求助10
9秒前
9秒前
夏沫完成签到,获得积分10
10秒前
科研通AI6应助niniyiya采纳,获得10
10秒前
睦月发布了新的文献求助10
10秒前
所所应助虚心岂愈采纳,获得10
10秒前
SciGPT应助wxp5294采纳,获得10
10秒前
王鹤霏完成签到,获得积分10
11秒前
11秒前
wlscj给现代的白枫的求助进行了留言
11秒前
12秒前
思源应助亭瞳采纳,获得10
13秒前
李键刚完成签到,获得积分10
13秒前
Chloe完成签到,获得积分10
13秒前
无极微光应助粽粽采纳,获得20
13秒前
芝华完成签到 ,获得积分10
14秒前
14秒前
机智依丝发布了新的文献求助10
16秒前
舒心白山发布了新的文献求助10
16秒前
wwwww完成签到,获得积分10
17秒前
cyyyyyyyyyy完成签到,获得积分10
18秒前
酷酷学发布了新的文献求助10
18秒前
zhy完成签到 ,获得积分20
20秒前
20秒前
依灵完成签到,获得积分10
21秒前
无敌龙傲天完成签到,获得积分10
22秒前
852应助机智依丝采纳,获得10
23秒前
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
Vertebrate Palaeontology, 5th Edition 340
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5259826
求助须知:如何正确求助?哪些是违规求助? 4421346
关于积分的说明 13762778
捐赠科研通 4295329
什么是DOI,文献DOI怎么找? 2356838
邀请新用户注册赠送积分活动 1353198
关于科研通互助平台的介绍 1314374