已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

ncRNAInter: a novel strategy based on graph neural network to discover interactions between lncRNA and miRNA

计算机科学 代表(政治) 可用性 编码(社会科学) 源代码 图形 人工神经网络 人工智能 非编码RNA 机器学习 生物信息学 理论计算机科学 数据挖掘 核糖核酸 人机交互 数学 生物 操作系统 政治学 统计 基因 政治 法学 生物化学
作者
Hanyu Zhang,Yunxia Wang,Ziqi Pan,Xiuna Sun,Minjie Mou,Bing Zhang,Zhaorong Li,Honglin Li,Feng Zhu
出处
期刊:Briefings in Bioinformatics [Oxford University Press]
卷期号:23 (6) 被引量:14
标识
DOI:10.1093/bib/bbac411
摘要

In recent years, many studies have illustrated the significant role that non-coding RNA (ncRNA) plays in biological activities, in which lncRNA, miRNA and especially their interactions have been proved to affect many biological processes. Some in silico methods have been proposed and applied to identify novel lncRNA-miRNA interactions (LMIs), but there are still imperfections in their RNA representation and information extraction approaches, which imply there is still room for further improving their performances. Meanwhile, only a few of them are accessible at present, which limits their practical applications. The construction of a new tool for LMI prediction is thus imperative for the better understanding of their relevant biological mechanisms. This study proposed a novel method, ncRNAInter, for LMI prediction. A comprehensive strategy for RNA representation and an optimized deep learning algorithm of graph neural network were utilized in this study. ncRNAInter was robust and showed better performance of 26.7% higher Matthews correlation coefficient than existing reputable methods for human LMI prediction. In addition, ncRNAInter proved its universal applicability in dealing with LMIs from various species and successfully identified novel LMIs associated with various diseases, which further verified its effectiveness and usability. All source code and datasets are freely available at https://github.com/idrblab/ncRNAInter.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
迷路的墨镜应助有丶神采纳,获得10
1秒前
都是发布了新的文献求助10
2秒前
鸣风发布了新的文献求助50
3秒前
tom完成签到,获得积分10
5秒前
lull完成签到,获得积分20
5秒前
yby发布了新的文献求助10
6秒前
慕青应助只只采纳,获得10
8秒前
9秒前
123456发布了新的文献求助10
10秒前
linzg关注了科研通微信公众号
11秒前
11秒前
我来也完成签到 ,获得积分10
11秒前
14秒前
14秒前
14秒前
xuan发布了新的文献求助10
14秒前
16秒前
yhao完成签到,获得积分10
18秒前
17686418536发布了新的文献求助10
18秒前
fouli发布了新的文献求助10
19秒前
19秒前
左友铭发布了新的文献求助10
20秒前
Ayyyy发布了新的文献求助10
21秒前
宋美美发布了新的文献求助10
21秒前
SciGPT应助烟酒不离生采纳,获得10
22秒前
只只发布了新的文献求助10
24秒前
CodeCraft应助Doublelin采纳,获得10
29秒前
星辰大海应助左友铭采纳,获得10
29秒前
29秒前
iNk应助白日梦想家采纳,获得20
32秒前
柳如烟应助烟酒不离生采纳,获得10
36秒前
贤君完成签到,获得积分10
36秒前
Ayyyy完成签到,获得积分10
38秒前
39秒前
tom关注了科研通微信公众号
42秒前
丘比特应助tzp采纳,获得10
43秒前
科研通AI5应助科研通管家采纳,获得10
43秒前
科研通AI5应助科研通管家采纳,获得10
43秒前
丘比特应助科研通管家采纳,获得10
44秒前
高分求助中
Mass producing individuality 600
Algorithmic Mathematics in Machine Learning 500
非光滑分析与控制理论 500
Разработка метода ускоренного контроля качества электрохромных устройств 500
A Combined Chronic Toxicity and Carcinogenicity Study of ε-Polylysine in the Rat 400
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 300
NK Cell Receptors: Advances in Cell Biology and Immunology by Colton Williams (Editor) 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3827082
求助须知:如何正确求助?哪些是违规求助? 3369330
关于积分的说明 10455680
捐赠科研通 3088971
什么是DOI,文献DOI怎么找? 1699560
邀请新用户注册赠送积分活动 817399
科研通“疑难数据库(出版商)”最低求助积分说明 770217