Learning Instance-Level Label Correlation Distribution for Multilabel Classification With Fuzzy Rough Sets

多标签分类 相关性 模式识别(心理学) 人工智能 计算机科学 数学 特征(语言学) 机器学习 模糊集 数据挖掘 粗集 相关性(法律) 模糊逻辑 分类器(UML) 语言学 哲学 几何学 政治学 法学
作者
Xiaoya Che,Degang Chen,Jusheng Mi
出处
期刊:IEEE Transactions on Fuzzy Systems [Institute of Electrical and Electronics Engineers]
卷期号:31 (8): 2871-2884 被引量:9
标识
DOI:10.1109/tfuzz.2023.3248060
摘要

In multilabel learning, research on label correlation provides an effective solution to compress the hypothesis space of classifiers. However, this article focus on the label correlation adapted to overall data, while ignoring the locally targeted information presented by some instances. The lack exploration on the distribution of local label correlation in multilabel instance space undoubtedly limits the in-depth application of label correlation in multilabel learning. Based on the fuzzy rough set theory, the instance-level label correlation distribution is first proposed in this article and applied to design a novel multilabel learner. For each multilabel instance, the local importance of features to label is quantitatively analyzed, by considering the decisive influence of input information on decision making. According to coincidence degree between local feature weight distribution for different labels, the instance-level label correlation is constructed. In order to reflect the internal relationship between label variables objectively, the instance-level label correlation distribution is integrated into the empirical label relevance. On the basis, the label relevance matrix is used to define the constraints of the optimization function in a new form. The relative position of subseparating hyperplanes in input space is quantitatively characterized to reduce the complexity of the multilabel classifier and improve the learning performance. The experiment results on 18 multilabel datasets illustrate the effectiveness of our algorithm. The impact of core parameters on the performance is also dissected.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
上善若水发布了新的文献求助10
刚刚
cheng完成签到,获得积分10
1秒前
1秒前
李健应助贾舒涵采纳,获得10
1秒前
xff发布了新的文献求助10
2秒前
Liuuhhua完成签到,获得积分10
2秒前
Haterain完成签到 ,获得积分10
4秒前
4秒前
5秒前
5秒前
5秒前
整齐冰凡发布了新的文献求助10
5秒前
义气山水发布了新的文献求助10
6秒前
7秒前
小周发布了新的文献求助10
8秒前
共享精神应助boshi采纳,获得10
8秒前
隐形曼青应助花痴的幻儿采纳,获得10
8秒前
8秒前
8秒前
淡然的筝发布了新的文献求助10
9秒前
lanmo完成签到,获得积分10
9秒前
隐形曼青应助hbb采纳,获得10
11秒前
zpq发布了新的文献求助10
11秒前
直觉完成签到,获得积分10
12秒前
12秒前
12秒前
12秒前
WuHong发布了新的文献求助10
13秒前
清风发布了新的文献求助10
13秒前
何香香能吃苦完成签到,获得积分10
14秒前
嘤嘤嘤发布了新的文献求助10
14秒前
zycdx3906发布了新的文献求助10
14秒前
14秒前
15秒前
JY发布了新的文献求助10
16秒前
16秒前
18秒前
lvjiahui发布了新的文献求助10
18秒前
ShawnaChan完成签到,获得积分10
19秒前
lhy完成签到,获得积分10
19秒前
高分求助中
Handbook of Diagnosis and Treatment of DSM-5-TR Personality Disorders (2025, 4th edition) 800
Algorithmic Mathematics in Machine Learning 500
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 400
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
The Monocyte-to-HDL ratio (MHR) as a prognostic and diagnostic biomarker in Acute Ischemic Stroke: A systematic review with meta-analysis (P9-14.010) 240
Limited Prognostic Value of Pretreatment Neutrophil-to-Lymphocyte Ratios in Elderly Patients with Multiple Myeloma 200
Werkstoffe und Bauweisen in der Fahrzeugtechnik 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3833093
求助须知:如何正确求助?哪些是违规求助? 3375551
关于积分的说明 10489469
捐赠科研通 3095145
什么是DOI,文献DOI怎么找? 1704250
邀请新用户注册赠送积分活动 819892
科研通“疑难数据库(出版商)”最低求助积分说明 771671