Multicontrast MRI Super-Resolution via Transformer-Empowered Multiscale Contextual Matching and Aggregation

计算机科学 规范化(社会学) 人工智能 模式识别(心理学) 匹配(统计) 特征(语言学) 嵌入 数据挖掘 自然语言处理 数学 人类学 语言学 统计 哲学 社会学
作者
Jun Lyu,Guangyuan Li,Chengyan Wang,Qing Cai,Qi Dou,David Zhang,Jing Qin
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:35 (9): 12004-12014 被引量:24
标识
DOI:10.1109/tnnls.2023.3250491
摘要

Magnetic resonance imaging (MRI) possesses the unique versatility to acquire images under a diverse array of distinct tissue contrasts, which makes multicontrast super-resolution (SR) techniques possible and needful. Compared with single-contrast MRI SR, multicontrast SR is expected to produce higher quality images by exploiting a variety of complementary information embedded in different imaging contrasts. However, existing approaches still have two shortcomings: 1) most of them are convolution-based methods and, hence, weak in capturing long-range dependencies, which are essential for MR images with complicated anatomical patterns and 2) they ignore to make full use of the multicontrast features at different scales and lack effective modules to match and aggregate these features for faithful SR. To address these issues, we develop a novel multicontrast MRI SR network via transformer-empowered multiscale feature matching and aggregation, dubbed McMRSR ++ . First, we tame transformers to model long-range dependencies in both reference and target images at different scales. Then, a novel multiscale feature matching and aggregation method is proposed to transfer corresponding contexts from reference features at different scales to the target features and interactively aggregate them. Furthermore, a texture-preserving branch and a contrastive constraint are incorporated into our framework for enhancing the textural details in the SR images. Experimental results on both public and clinical in vivo datasets show that McMRSR ++ outperforms state-of-the-art methods under peak signal to noise ratio (PSNR), structure similarity index measure (SSIM), and root mean square error (RMSE) metrics significantly. Visual results demonstrate the superiority of our method in restoring structures, demonstrating its great potential to improve scan efficiency in clinical practice.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
怡然凌柏完成签到 ,获得积分10
1秒前
张姐发布了新的文献求助10
2秒前
LYHT发布了新的文献求助10
2秒前
2秒前
大模型应助健壮慕梅采纳,获得10
2秒前
2秒前
激情的冰绿关注了科研通微信公众号
2秒前
Elsa完成签到,获得积分10
3秒前
3秒前
3秒前
kj完成签到,获得积分10
4秒前
111发布了新的文献求助10
4秒前
李爱国应助yangts2021采纳,获得10
4秒前
赘婿应助susiex采纳,获得10
4秒前
5秒前
5秒前
丰富的乌冬面应助doby飞飞采纳,获得10
5秒前
charlie发布了新的文献求助10
5秒前
zhoumaoyuan发布了新的文献求助10
7秒前
7秒前
8秒前
8秒前
9秒前
9秒前
无花果应助小言采纳,获得10
9秒前
kkk关闭了kkk文献求助
9秒前
10秒前
Soul459发布了新的文献求助30
10秒前
哈基米应助科研通管家采纳,获得20
10秒前
科研通AI6应助科研通管家采纳,获得10
11秒前
浮游应助科研通管家采纳,获得10
11秒前
pluto应助科研通管家采纳,获得10
11秒前
李健应助科研通管家采纳,获得10
11秒前
搜集达人应助科研通管家采纳,获得10
11秒前
英俊的铭应助科研通管家采纳,获得30
11秒前
浮槎发布了新的文献求助10
11秒前
JamesPei应助科研通管家采纳,获得10
11秒前
11秒前
萌~Lucky发布了新的文献求助10
11秒前
高分求助中
Aerospace Standards Index - 2025 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 1000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
List of 1,091 Public Pension Profiles by Region 981
流动的新传统主义与新生代农民工的劳动力再生产模式变迁 500
Elements of Evolutionary Genetics 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5451848
求助须知:如何正确求助?哪些是违规求助? 4559636
关于积分的说明 14274317
捐赠科研通 4483680
什么是DOI,文献DOI怎么找? 2455611
邀请新用户注册赠送积分活动 1446515
关于科研通互助平台的介绍 1422340