天然橡胶
埃洛石
多酚
环境友好型
弹性体
化学
石油化工
表面改性
有机化学
抗氧化剂
材料科学
纳米技术
化学工程
复合材料
物理化学
生态学
工程类
生物
作者
Xiaohui Guo,Lijuan Chen,Yingyu Liang,Yuanfang Luo,Fan Kang,Bo Zhao,Demin Jia
标识
DOI:10.1021/acssuschemeng.2c07242
摘要
The strategy of using sustainable biomass resources instead of traditional petrochemical products has been established as an environmentally friendly way to achieve the "green rubber" industry. Meanwhile, rubber antioxidants possessing high efficiency, long-lasting protection, migration resistance, and green multifunctional properties have attracted intensive investigation for rubber protection. Herein, a naturally extracted substance of tea polyphenol (TP)-functionalized halloysite nanotubes (HNTs), which generates the slow release of free-radical capturing activity and excellent interfacial interaction in the natural rubber matrix, is fabricated by vacuum-pumping and surface-decorating methods (denoted as HNTs-s-TP). Interestingly, the nontoxic and natural antioxidant HNTs-s-TP exhibited remarkable thermo-oxidative aging resistance and stability in a natural rubber (NR) matrix compared to that of TP directly pumped into the tubes due to the further modification of the chemical anchor TP on the outer surface of HNTs. In addition, we have systematically investigated the mechanism for highly efficient and sustainable antioxidation in the rubber matrix via the natural antioxidant HNTs-s-TP derived from the constructed galloyl structure. We envision that this new natural antioxidant fabrication technology will provide significant insights into the innovation for the construction of green and eco-friendly functionalized rubber additives.
科研通智能强力驱动
Strongly Powered by AbleSci AI