Cross-modality feature fusion for night pedestrian detection

模态(人机交互) 特征(语言学) 行人 行人检测 人工智能 计算机科学 融合 模式识别(心理学) 计算机视觉 工程类 运输工程 语言学 哲学
作者
Yong Feng,Enbo Luo,Hai Lü,SuWei Zhai
出处
期刊:Frontiers in Physics [Frontiers Media]
卷期号:12
标识
DOI:10.3389/fphy.2024.1356248
摘要

Night pedestrian detection with visible image only suffers from the dilemma of high miss rate due to poor illumination conditions. Cross-modality fusion can ameliorate this dilemma by providing complementary information to each other through infrared and visible images. In this paper, we propose a cross-modal fusion framework based on YOLOv5, which is aimed at addressing the challenges of night pedestrian detection under low-light conditions. The framework employs a dual-stream architecture that processes visible images and infrared images separately. Through the Cross-Modal Feature Rectification Module (CMFRM), visible and infrared features are finely tuned on a granular level, leveraging their spatial correlations to focus on complementary information and substantially reduce uncertainty and noise from different modalities. Additionally, we have introduced a two-stage Feature Fusion Module (FFM), with the first stage introducing a cross-attention mechanism for cross-modal global reasoning, and the second stage using a mixed channel embedding to produce enhanced feature outputs. Moreover, our method involves multi-dimensional interaction, not only correcting feature maps in terms of channel and spatial dimensions but also applying cross-attention at the sequence processing level, which is critical for the effective generalization of cross-modal feature combinations. In summary, our research significantly enhances the accuracy and robustness of nighttime pedestrian detection, offering new perspectives and technical pathways for visual information processing in low-light environments.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
2秒前
yin发布了新的文献求助10
2秒前
多情蓝发布了新的文献求助10
2秒前
3秒前
www发布了新的文献求助10
3秒前
田様应助Ayaya采纳,获得10
3秒前
852应助李卓采纳,获得10
3秒前
aaa完成签到,获得积分10
4秒前
TRY关闭了TRY文献求助
4秒前
柚哦完成签到,获得积分10
5秒前
5秒前
无心的寄灵完成签到,获得积分10
6秒前
jgpiao发布了新的文献求助10
7秒前
11发布了新的文献求助10
8秒前
jj158发布了新的文献求助30
8秒前
sean118完成签到 ,获得积分10
9秒前
9秒前
9秒前
周芷天完成签到,获得积分10
10秒前
酷波er应助快来和姐妹玩采纳,获得10
11秒前
思源应助吴zzzz采纳,获得10
12秒前
共享精神应助Thien采纳,获得10
13秒前
15秒前
16秒前
归尘应助young采纳,获得30
16秒前
科研通AI5应助lz采纳,获得10
16秒前
健康的大门完成签到,获得积分10
17秒前
若若1223完成签到 ,获得积分10
17秒前
无名花生完成签到 ,获得积分0
18秒前
快来和姐妹玩完成签到,获得积分10
18秒前
19秒前
冰魂应助jj158采纳,获得10
20秒前
隐形曼青应助fxinglong采纳,获得10
20秒前
Ayaya发布了新的文献求助10
21秒前
hugeng发布了新的文献求助10
21秒前
小许会更好完成签到,获得积分10
21秒前
22秒前
23秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Technologies supporting mass customization of apparel: A pilot project 450
Mixing the elements of mass customisation 360
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
Political Ideologies Their Origins and Impact 13th Edition 260
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3781731
求助须知:如何正确求助?哪些是违规求助? 3327303
关于积分的说明 10230369
捐赠科研通 3042188
什么是DOI,文献DOI怎么找? 1669800
邀请新用户注册赠送积分活动 799374
科研通“疑难数据库(出版商)”最低求助积分说明 758792