MOQEA/D: Multi-Objective QEA With Decomposition Mechanism and Excellent Global Search and Its Application

背包问题 渡线 分解 连续背包问题 多目标优化 计算机科学 随机性 数学优化 数学 人工智能 生态学 统计 生物
作者
Wu Deng,Xing Cai,Daqing Wu,Yingjie Song,Huiling Chen,Xiaojuan Ran,Xiangbing Zhou,Huimin Zhao
出处
期刊:IEEE Transactions on Intelligent Transportation Systems [Institute of Electrical and Electronics Engineers]
卷期号:25 (9): 12517-12527 被引量:41
标识
DOI:10.1109/tits.2024.3373510
摘要

In this paper, a large-scale multi-objective gate assignment model is constructed by considering the flight international and domestic attributes, task type, airline affiliation, and aircraft type. Then a multi-objective quantum-inspired evolutionary algorithm based on decomposition mechanism, namely MOQEA/D is developed to solve the constructed model effectively. Specifically, a new decomposition mechanism is designed to decompose the multi-objective GAP into several single-objective sub-GAPs. Each quantum bit string solves a single-objective sub-GAP independently. And a new optimal crossover strategy is proposed to limit the randomness of observation operations and maximize the preservation of excellent genes to further improve the optimization performance. Finally, the multi-objective knapsack problem and the multi-objective GAP are selected to verify the effectiveness of the MOQEA/D. The experiment results demonstrate that the MOQEA/D can effectively solve large-scale multi-objective knapsack problem and obtain ideal gate assignment results. It takes on very significance and application value in solving complex optimization problems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
qwq发布了新的文献求助10
1秒前
科研通AI2S应助草木采纳,获得10
2秒前
科研完成签到,获得积分20
5秒前
Yola完成签到,获得积分10
6秒前
6秒前
7秒前
7秒前
光亮静槐完成签到 ,获得积分10
8秒前
8秒前
10秒前
11秒前
zjq发布了新的文献求助10
12秒前
12秒前
noss发布了新的文献求助10
12秒前
公冶愚志完成签到,获得积分10
13秒前
13秒前
研友_08oa3n完成签到 ,获得积分10
13秒前
潇湘夜雨发布了新的文献求助30
13秒前
13秒前
zhiqing发布了新的文献求助10
14秒前
深情安青应助楚子航采纳,获得10
14秒前
14秒前
深情安青应助伯云采纳,获得10
16秒前
北风应助坦率的寻双采纳,获得10
17秒前
英俊的铭应助无心的土豆采纳,获得10
17秒前
赘婿应助ZhaoY采纳,获得10
18秒前
从容的鲜花完成签到,获得积分20
18秒前
jenningseastera应助zxxx采纳,获得10
18秒前
11哥应助zxxx采纳,获得10
18秒前
jenningseastera应助zxxx采纳,获得10
18秒前
11哥应助zjq采纳,获得10
18秒前
微卫星不稳定完成签到 ,获得积分10
19秒前
19秒前
19秒前
果果完成签到,获得积分20
19秒前
20秒前
paixingxing关注了科研通微信公众号
23秒前
23秒前
25秒前
Z小姐发布了新的文献求助10
25秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
Technologies supporting mass customization of apparel: A pilot project 450
A China diary: Peking 400
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3784148
求助须知:如何正确求助?哪些是违规求助? 3329279
关于积分的说明 10241157
捐赠科研通 3044752
什么是DOI,文献DOI怎么找? 1671305
邀请新用户注册赠送积分活动 800215
科研通“疑难数据库(出版商)”最低求助积分说明 759268