亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A bearing surface defect detection method based on multi-attention mechanism Yolov8

机制(生物学) 方位(导航) 曲面(拓扑) 材料科学 计算机科学 人工智能 物理 数学 几何学 量子力学
作者
Pengcheng Ding,Hongfei Zhan,Junhe Yu,Rui Wang
出处
期刊:Measurement Science and Technology [IOP Publishing]
卷期号:35 (8): 086003-086003 被引量:4
标识
DOI:10.1088/1361-6501/ad4386
摘要

Abstract Surface defects in bearings not only affect the appearance but also impact the service life and performance. Therefore, it is imperative for bearing manufacturers to conduct quality inspections before bearings leave the factory. However, traditional visual inspection methods exhibit shortcomings such as high omission rates, insufficient feature fusion and oversized models when dealing with multiple target defects in bearings. To address these challenges, this paper proposes a surface defect detection method for bearings based on an improved Yolov8 algorithm (G-Yolov8). Firstly, a C3Ghost convolutional module based on the Ghost module is constructed in YOLOv8 to simplify model computational costs. Secondly, a global attention mechanism module is designed at the end of the backbone network to increase sensitivity to implicit small target area features and optimize feature extraction efficiency. Subsequently, a deep deformable convolution feature pyramid network is constructed by introducing the deformable convolutional networks version 2 (DCNv2) and the lightweight content-aware reassembly of features upsampling operator to reduce sampling information loss and improve the fusion of multi-scale target defects. Finally, different attention mechanisms are embedded in the detection network to construct a multi-attention detection head to replace the decoupled head, refining classification and localization tasks, reducing feature confusion, and improving the model’s detection accuracy. Experimental results demonstrate that the improved algorithm achieves a 3.5% increase in mean average precision on a self-made small-scale train bearing surface defect dataset, with a 17.3% reduction in model size. This improvement not only enhances accuracy but also addresses the requirement for lightweight deployment in subsequent stages.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
从容的盼晴完成签到,获得积分10
14秒前
18秒前
23秒前
WWW完成签到 ,获得积分10
26秒前
汉堡包应助lizhuoran采纳,获得10
32秒前
37秒前
lizhuoran发布了新的文献求助10
42秒前
1分钟前
完美芒果完成签到,获得积分10
1分钟前
穆振家完成签到,获得积分10
1分钟前
1分钟前
科研通AI5应助天真的雁露采纳,获得30
1分钟前
1分钟前
小二郎应助科研通管家采纳,获得30
1分钟前
小马甲应助科研通管家采纳,获得10
1分钟前
完美芒果发布了新的文献求助10
1分钟前
1分钟前
祎薇发布了新的文献求助10
1分钟前
小二郎应助lizhuoran采纳,获得10
2分钟前
彭于晏应助彭佳丽采纳,获得10
2分钟前
2分钟前
2分钟前
2分钟前
linyuling发布了新的文献求助10
2分钟前
2分钟前
彭佳丽发布了新的文献求助10
2分钟前
lizhuoran发布了新的文献求助10
2分钟前
linyuling完成签到,获得积分10
2分钟前
2分钟前
2分钟前
研友_VZG7GZ应助lizhuoran采纳,获得10
2分钟前
科研通AI5应助卡皮巴拉采纳,获得10
2分钟前
3分钟前
卡皮巴拉发布了新的文献求助10
3分钟前
小二郎应助科研通管家采纳,获得10
3分钟前
科研通AI2S应助科研通管家采纳,获得10
3分钟前
Hello应助科研通管家采纳,获得10
3分钟前
科研通AI5应助科研通管家采纳,获得30
3分钟前
Eatanicecube完成签到,获得积分10
3分钟前
Dawn完成签到,获得积分10
3分钟前
高分求助中
传播真理奋斗不息——中共中央编译局成立50周年纪念文集(1953—2003) 700
Technologies supporting mass customization of apparel: A pilot project 600
武汉作战 石川达三 500
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3811682
求助须知:如何正确求助?哪些是违规求助? 3355965
关于积分的说明 10378743
捐赠科研通 3072923
什么是DOI,文献DOI怎么找? 1687775
邀请新用户注册赠送积分活动 811806
科研通“疑难数据库(出版商)”最低求助积分说明 766863