VST++: Efficient and Stronger Visual Saliency Transformer

人工智能 计算机科学 计算机视觉 变压器 模式识别(心理学) 可视化 工程类 电压 电气工程
作者
Nian Liu,Ziyang Luo,Ni Zhang,Junwei Han
出处
期刊:IEEE Transactions on Pattern Analysis and Machine Intelligence [IEEE Computer Society]
卷期号:46 (11): 7300-7316 被引量:34
标识
DOI:10.1109/tpami.2024.3388153
摘要

While previous CNN-based models have exhibited promising results for salient object detection (SOD), their ability to explore global long-range dependencies is restricted. Our previous work, the Visual Saliency Transformer (VST), addressed this constraint from a transformer-based sequence-to-sequence perspective, to unify RGB and RGB-D SOD. In VST, we developed a multi-task transformer decoder that concurrently predicts saliency and boundary outcomes in a pure transformer architecture. Moreover, we introduced a novel token upsampling method called reverse T2T for predicting a high-resolution saliency map effortlessly within transformer-based structures. Building upon the VST model, we further propose an efficient and stronger VST version in this work, i.e. VST ++ . To mitigate the computational costs of the VST model, we propose a Select-Integrate Attention (SIA) module, partitioning foreground into fine-grained segments and aggregating background information into a single coarse-grained token. To incorporate 3D depth information with low cost, we design a novel depth position encoding method tailored for depth maps. Furthermore, we introduce a token-supervised prediction loss to provide straightforward guidance for the task-related tokens. We evaluate our VST ++ model across various transformer-based backbones on RGB, RGB-D, and RGB-T SOD benchmark datasets. Experimental results show that our model outperforms existing methods while achieving a 25% reduction in computational costs without significant performance compromise. The demonstrated strong ability for generalization, enhanced performance, and heightened efficiency of our VST ++ model highlight its potential.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
12345发布了新的文献求助10
2秒前
李博士发布了新的文献求助10
2秒前
4秒前
5秒前
爱橙色的阿七完成签到,获得积分20
5秒前
星河鹭起完成签到,获得积分10
5秒前
qqcc001发布了新的文献求助10
7秒前
7秒前
lalla发布了新的文献求助10
7秒前
所所应助李,,,,采纳,获得10
8秒前
12345完成签到,获得积分10
9秒前
mint-WANG发布了新的文献求助10
9秒前
sywkamw发布了新的文献求助30
9秒前
李博士完成签到,获得积分10
10秒前
酷波er应助上官以山采纳,获得10
10秒前
corrine1426发布了新的文献求助10
11秒前
小马甲应助肖潇雨歇采纳,获得10
11秒前
sleepingfish应助kenyant采纳,获得20
12秒前
Aliaoovo发布了新的文献求助10
12秒前
13秒前
14秒前
14秒前
16秒前
GGGrigor发布了新的文献求助10
16秒前
想摆就摆完成签到,获得积分10
17秒前
深情安青应助FGG采纳,获得10
17秒前
17秒前
8888拉发布了新的文献求助10
18秒前
普区完成签到,获得积分20
18秒前
18秒前
19秒前
Augreen完成签到,获得积分10
19秒前
情怀应助ztl17523采纳,获得10
20秒前
20秒前
Yang发布了新的文献求助10
22秒前
22秒前
22秒前
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
A Half Century of the Sonogashira Reaction 1000
Artificial Intelligence driven Materials Design 600
Investigation the picking techniques for developing and improving the mechanical harvesting of citrus 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5190952
求助须知:如何正确求助?哪些是违规求助? 4374481
关于积分的说明 13621308
捐赠科研通 4228383
什么是DOI,文献DOI怎么找? 2319255
邀请新用户注册赠送积分活动 1317796
关于科研通互助平台的介绍 1267826