Privacy-Preserving Heterogeneous Personalized Federated Learning with Knowledge

计算机科学 信息隐私 联合学习 隐私保护 互联网隐私 人工智能
作者
Yanghe Pan,Zhou Su,Jianbing Ni,Yuntao Wang,Jinhao Zhou
出处
期刊:IEEE Transactions on Network Science and Engineering [Institute of Electrical and Electronics Engineers]
卷期号:11 (6): 5969-5982
标识
DOI:10.1109/tnse.2024.3386623
摘要

Personalized federated learning (PFL) has gained increasing attention due to its success in handling the statistical heterogeneity of participants' local data by building distinct local models for participants. However, existing PFL schemes require the identical architecture and size of participants' models, e.g., the same number of layers in convolutional neural networks (CNN). In addition, the growing privacy issues (e.g., local update leakage to the curious server in model aggregation) have not been resolved in PFL. The utilization of identical model architectures among participants reduces the cost of privacy attacks since only one uniform attack method is required to extract private information, exacerbating the privacy threat. This paper proposes a novel privacy-preserving PFL framework that supports heterogeneous model architectures and sizes in delivering personalized models for different participants. Specifically, we utilize participants' knowledge, i.e., the soft predictions of local models on a public dataset, to effectively identify participants with similar data distributions regardless of the specific model architectures used. Based on the participants' knowledge, and their computing and storage capabilities, we employ the affinity propagation (AP) algorithm to implement a multi-level participant clustering mechanism for enabling heterogeneous PFL. Since knowledge is independent of original data, it is considered privacy-preserving during the clustering process. We also devise the ring aggregation algorithm to guarantee participants' privacy during the federated training process. In this way, each participant benefits from other participants with similar data distributions privately and obtains a satisfying personalized model. Furthermore, the cross-cluster knowledge transfer method boosts the personalization performance of weak participants. Sufficient theoretical analyses prove the effectiveness and privacy-preserving capacity of the proposed scheme. Extensive experiments on three benchmark datasets also demonstrate the superiority of our proposed scheme in various settings while maintaining privacy protection, outperforming other state-of-the-art schemes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
英姑应助糊涂的熊猫采纳,获得10
刚刚
刚刚
小马甲应助迅速海亦采纳,获得10
刚刚
尼古拉发布了新的文献求助30
刚刚
重要钥匙发布了新的文献求助10
1秒前
飞跃完成签到,获得积分10
1秒前
save完成签到,获得积分10
1秒前
舒适的亦瑶完成签到,获得积分10
1秒前
1秒前
kosmos完成签到,获得积分10
1秒前
斯文败类应助聪慧芷巧采纳,获得10
1秒前
2秒前
小芳不止妖娆完成签到,获得积分10
2秒前
脑洞疼应助如烈火如止水采纳,获得10
2秒前
Qq完成签到,获得积分10
2秒前
2秒前
长生完成签到,获得积分10
2秒前
JJ完成签到,获得积分10
3秒前
吾猫发布了新的文献求助10
3秒前
3秒前
凡而不庸完成签到,获得积分10
3秒前
小呆呆完成签到 ,获得积分10
3秒前
uuunnn发布了新的文献求助10
4秒前
cjz完成签到,获得积分20
4秒前
5秒前
5秒前
5秒前
Scidog完成签到,获得积分10
6秒前
专一的小海豚完成签到 ,获得积分10
6秒前
量子星尘发布了新的文献求助10
6秒前
A高完成签到,获得积分10
6秒前
7秒前
希希发布了新的文献求助10
7秒前
所所应助大白不白采纳,获得10
7秒前
Amazingwss完成签到,获得积分10
7秒前
活泼玫瑰发布了新的文献求助10
7秒前
未改完成签到,获得积分10
8秒前
8秒前
8秒前
9秒前
高分求助中
Africanfuturism: African Imaginings of Other Times, Spaces, and Worlds 3000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 2000
The Oxford Encyclopedia of the History of Modern Psychology 2000
Synthesis of 21-Thioalkanoic Acids of Corticosteroids 1000
Electron microscopy study of magnesium hydride (MgH2) for Hydrogen Storage 1000
Structural Equation Modeling of Multiple Rater Data 700
 Introduction to Comparative Public Administration Administrative Systems and Reforms in Europe, Third Edition 3rd edition 590
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3886218
求助须知:如何正确求助?哪些是违规求助? 3428367
关于积分的说明 10760264
捐赠科研通 3153229
什么是DOI,文献DOI怎么找? 1740970
邀请新用户注册赠送积分活动 840409
科研通“疑难数据库(出版商)”最低求助积分说明 785378