亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

scBOL: a universal cell type identification framework for single-cell and spatial transcriptomics data

计算机科学 鉴定(生物学) 注释 电池类型 仿形(计算机编程) 数据类型 转录组 计算生物学 细胞 人工智能 生物 基因 基因表达 生物化学 操作系统 植物 程序设计语言 遗传学
作者
Yuyao Zhai,Liang Chen,Minghua Deng
出处
期刊:Briefings in Bioinformatics [Oxford University Press]
卷期号:25 (3) 被引量:7
标识
DOI:10.1093/bib/bbae188
摘要

Abstract Motivation Over the past decade, single-cell transcriptomic technologies have experienced remarkable advancements, enabling the simultaneous profiling of gene expressions across thousands of individual cells. Cell type identification plays an essential role in exploring tissue heterogeneity and characterizing cell state differences. With more and more well-annotated reference data becoming available, massive automatic identification methods have sprung up to simplify the annotation process on unlabeled target data by transferring the cell type knowledge. However, in practice, the target data often include some novel cell types that are not in the reference data. Most existing works usually classify these private cells as one generic ‘unassigned’ group and learn the features of known and novel cell types in a coupled way. They are susceptible to the potential batch effects and fail to explore the fine-grained semantic knowledge of novel cell types, thus hurting the model’s discrimination ability. Additionally, emerging spatial transcriptomic technologies, such as in situ hybridization, sequencing and multiplexed imaging, present a novel challenge to current cell type identification strategies that predominantly neglect spatial organization. Consequently, it is imperative to develop a versatile method that can proficiently annotate single-cell transcriptomics data, encompassing both spatial and non-spatial dimensions. Results To address these issues, we propose a new, challenging yet realistic task called universal cell type identification for single-cell and spatial transcriptomics data. In this task, we aim to give semantic labels to target cells from known cell types and cluster labels to those from novel ones. To tackle this problem, instead of designing a suboptimal two-stage approach, we propose an end-to-end algorithm called scBOL from the perspective of Bipartite prototype alignment. Firstly, we identify the mutual nearest clusters in reference and target data as their potential common cell types. On this basis, we mine the cycle-consistent semantic anchor cells to build the intrinsic structure association between two data. Secondly, we design a neighbor-aware prototypical learning paradigm to strengthen the inter-cluster separability and intra-cluster compactness within each data, thereby inspiring the discriminative feature representations. Thirdly, driven by the semantic-aware prototypical learning framework, we can align the known cell types and separate the private cell types from them among reference and target data. Such an algorithm can be seamlessly applied to various data types modeled by different foundation models that can generate the embedding features for cells. Specifically, for non-spatial single-cell transcriptomics data, we use the autoencoder neural network to learn latent low-dimensional cell representations, and for spatial single-cell transcriptomics data, we apply the graph convolution network to capture molecular and spatial similarities of cells jointly. Extensive results on our carefully designed evaluation benchmarks demonstrate the superiority of scBOL over various state-of-the-art cell type identification methods. To our knowledge, we are the pioneers in presenting this pragmatic annotation task, as well as in devising a comprehensive algorithmic framework aimed at resolving this challenge across varied types of single-cell data. Finally, scBOL is implemented in Python using the Pytorch machine-learning library, and it is freely available at https://github.com/aimeeyaoyao/scBOL.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
赵赵发布了新的文献求助10
1秒前
手可摘星陈同学完成签到 ,获得积分10
7秒前
松林完成签到,获得积分10
9秒前
papercloud完成签到 ,获得积分10
12秒前
水晶鞋完成签到 ,获得积分10
12秒前
商雪完成签到,获得积分20
15秒前
15秒前
chenym完成签到,获得积分10
21秒前
爱学习的YY完成签到 ,获得积分10
23秒前
23秒前
共享精神应助pipiap采纳,获得10
24秒前
SciGPT应助sujinyu采纳,获得10
25秒前
为你钟情完成签到 ,获得积分10
26秒前
顾矜应助fujun采纳,获得50
27秒前
sumwee完成签到,获得积分10
27秒前
商雪关注了科研通微信公众号
27秒前
29秒前
SH完成签到,获得积分10
30秒前
风中的问旋应助浪沧一刀采纳,获得10
32秒前
34秒前
乐乐应助读书的时候采纳,获得10
35秒前
35秒前
35秒前
morena应助科研通管家采纳,获得30
37秒前
BowieHuang应助科研通管家采纳,获得10
37秒前
Jasper应助科研通管家采纳,获得10
37秒前
科研通AI6应助科研通管家采纳,获得10
37秒前
pipiap发布了新的文献求助10
39秒前
hanghang发布了新的文献求助10
43秒前
ding应助YQQ采纳,获得10
44秒前
shengbo完成签到 ,获得积分10
49秒前
大道希言完成签到,获得积分10
49秒前
1分钟前
1分钟前
1分钟前
王王完成签到 ,获得积分10
1分钟前
hanghang完成签到,获得积分10
1分钟前
pia叽完成签到 ,获得积分10
1分钟前
小竹完成签到 ,获得积分10
1分钟前
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Russian Foreign Policy: Change and Continuity 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5731709
求助须知:如何正确求助?哪些是违规求助? 5332329
关于积分的说明 15321447
捐赠科研通 4877652
什么是DOI,文献DOI怎么找? 2620446
邀请新用户注册赠送积分活动 1569773
关于科研通互助平台的介绍 1526243