亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Enhancing recurrence risk prediction for bladder cancer using multi-sequence MRI radiomics

无线电技术 神经组阅片室 医学 介入放射学 膀胱癌 序列(生物学) 放射科 磁共振成像 癌症 医学物理学 内科学 神经学 遗传学 精神科 生物
作者
Guoqiang Yang,Jingjing Bai,Min Hu,Lu Zhang,Zhichang Fan,Xiaochun Wang
出处
期刊:Insights Into Imaging [Springer Nature]
卷期号:15 (1)
标识
DOI:10.1186/s13244-024-01662-3
摘要

Abstract Objective We aimed to develop a radiomics-clinical nomogram using multi-sequence MRI to predict recurrence-free survival (RFS) in bladder cancer (BCa) patients and assess its superiority over clinical models. Methods A retrospective cohort of 229 BCa patients with preoperative multi-sequence MRI was divided into a training set ( n = 160) and a validation set ( n = 69). Radiomics features were extracted from T2-weighted images, diffusion-weighted imaging, apparent diffusion coefficient, and dynamic contrast-enhanced images. Effective features were identified using the least absolute shrinkage and selection operator (LASSO) method. Clinical risk factors were determined via univariate and multivariate Cox analysis, leading to the creation of a radiomics-clinical nomogram. Kaplan-Meier analysis and log-rank tests assessed the relationship between radiomics features and RFS. We calculated the net reclassification improvement (NRI) to evaluate the added value of the radiomics signature and used decision curve analysis (DCA) to assess the nomogram’s clinical validity. Results Radiomics features significantly correlated with RFS (log-rank p < 0.001) and were independent of clinical factors ( p < 0.001). The combined model, incorporating radiomics features and clinical data, demonstrated the best prognostic value, with C-index values of 0.853 in the training set and 0.832 in the validation set. Compared to the clinical model, the radiomics-clinical nomogram exhibited superior calibration and classification (NRI: 0.6768, 95% CI: 0.5549-0.7987, p < 0.001). Conclusion The radiomics-clinical nomogram, based on multi-sequence MRI, effectively assesses the BCa recurrence risk. It outperforms both the radiomics model and the clinical model in predicting BCa recurrence risk. Critical relevance statement The radiomics-clinical nomogram, utilizing multi-sequence MRI, holds promise for predicting bladder cancer recurrence, enhancing individualized clinical treatment, and performing tumor surveillance. Key points • Radiomics plays a vital role in predicting bladder cancer recurrence. • Precise prediction of tumor recurrence risk is crucial for clinical management. • MRI-based radiomics models excel in predicting bladder cancer recurrence. Graphical Abstract

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
hulala完成签到,获得积分20
1秒前
小田完成签到,获得积分10
2秒前
传奇3应助Capybara采纳,获得10
2秒前
2秒前
丹青完成签到 ,获得积分10
4秒前
if发布了新的文献求助10
8秒前
9秒前
hulala关注了科研通微信公众号
13秒前
Capybara发布了新的文献求助10
15秒前
Aipoi1完成签到,获得积分10
24秒前
田様应助pcr采纳,获得10
25秒前
25秒前
30秒前
32秒前
35秒前
35秒前
Cm完成签到,获得积分10
38秒前
pcr发布了新的文献求助10
39秒前
angel元元应助彩色的忆霜采纳,获得10
41秒前
Michelle完成签到 ,获得积分10
42秒前
44秒前
if完成签到,获得积分10
45秒前
Lucas应助radio采纳,获得10
46秒前
Capybara完成签到,获得积分10
47秒前
sonnekater应助贪玩的无招采纳,获得10
48秒前
钱邦国完成签到 ,获得积分10
48秒前
研友_VZG7GZ应助if采纳,获得10
51秒前
小二郎应助dpp采纳,获得10
54秒前
kd1412完成签到 ,获得积分10
54秒前
高高菠萝完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
monster完成签到 ,获得积分10
1分钟前
1分钟前
dpp发布了新的文献求助10
1分钟前
1分钟前
lxs完成签到,获得积分10
1分钟前
1分钟前
Marshall完成签到,获得积分10
1分钟前
大方明杰发布了新的文献求助10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Psychology and Work Today 1400
Operational Bulk Evaporation Duct Model for MORIAH Version 1.2 1200
Variants in Economic Theory 1000
Global Ingredients & Formulations Guide 2014, Hardcover 1000
Research for Social Workers 1000
Signals, Systems, and Signal Processing 880
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5839576
求助须知:如何正确求助?哪些是违规求助? 6141612
关于积分的说明 15603880
捐赠科研通 4957426
什么是DOI,文献DOI怎么找? 2672254
邀请新用户注册赠送积分活动 1617334
关于科研通互助平台的介绍 1572366