Fusion and Discrimination: A Multimodal Graph Contrastive Learning Framework for Multimodal Sarcasm Detection

讽刺 人工智能 模式治疗法 计算机科学 心理学 自然语言处理 语言学 讽刺 哲学 心理治疗师
作者
Bin Liang,Lin Gui,Yulan He,Erik Cambria,Ruifeng Xu
出处
期刊:IEEE Transactions on Affective Computing [Institute of Electrical and Electronics Engineers]
卷期号:15 (4): 1874-1888 被引量:30
标识
DOI:10.1109/taffc.2024.3380375
摘要

Identifying sarcastic clues from both textual and visual information has become an important research issue, called Multimodal Sarcasm Detection. In this paper, we investigate multimodal sarcasm detection from a novel perspective, where a multimodal graph contrastive learning strategy is proposed to fuse and distinguish the sarcastic clues for textual modality and visual modality. Specifically, we first utilize object detection to derive the crucial visual regions accompanied by their captions of the images, which allows better learning of the key visual regions of visual modality. In addition, to make full use of the semantic information of the visual modality, we employ optical character recognition to extract the textual content in the images. Then, based on image regions, the textual content of visual modality, and the context of the textual modality, we build a multimodal graph for each sample to model the intricate sarcastic relations between modalities. Furthermore, we devise a graph-oriented contrastive learning strategy to leverage the correlations in the same label and differences between different labels, so as to capture better multimodal representations for multimodal sarcasm detection. Extensive experiments show that our method outperforms the previous best baseline models (with a 2.47% improvement in Accuracy, a 1.99% improvement in F-score, and a 2.20% improvement in Macro F-score). The ablation study shows that both multimodal graph structure and graph-oriented contrastive learning are important to our framework. Further, the experiments of using different pre-trained methods show that the proposed multimodal graph contrastive learning framework can directly work with various pre-trained models and achieve outstanding performance in multimodal sarcasm detection.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
hony完成签到,获得积分10
1秒前
Kenny发布了新的文献求助30
1秒前
Behappy完成签到 ,获得积分10
1秒前
bkagyin应助123采纳,获得10
1秒前
1秒前
2秒前
ZWGS发布了新的文献求助10
2秒前
2秒前
NexusExplorer应助加百莉采纳,获得10
5秒前
酷波er应助呦呦君必发SCI采纳,获得10
5秒前
Hector完成签到,获得积分10
6秒前
xiao发布了新的文献求助20
6秒前
6秒前
无花果应助R18686226306采纳,获得10
6秒前
大个应助R18686226306采纳,获得10
6秒前
6秒前
6秒前
叁叁完成签到 ,获得积分10
6秒前
CodeCraft应助Gabriel1116采纳,获得10
7秒前
苗修杰发布了新的文献求助10
7秒前
量子星尘发布了新的文献求助10
7秒前
mmm4发布了新的文献求助10
9秒前
9秒前
10秒前
ghhhn发布了新的文献求助10
10秒前
yu发布了新的文献求助10
11秒前
11秒前
yuye_Liu发布了新的文献求助10
11秒前
12秒前
哆啦B梦的同伴关注了科研通微信公众号
12秒前
888发布了新的文献求助10
12秒前
呦呦君必发SCI完成签到,获得积分10
15秒前
不想起发布了新的文献求助10
15秒前
15秒前
16秒前
Orange应助努力的小蓁蓁采纳,获得10
16秒前
xiiixixiixi发布了新的文献求助10
16秒前
小王发布了新的文献求助10
16秒前
连长发布了新的文献求助10
16秒前
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 6000
Real World Research, 5th Edition 680
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 660
Superabsorbent Polymers 600
Handbook of Migration, International Relations and Security in Asia 555
Between high and low : a chronology of the early Hellenistic period 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5675597
求助须知:如何正确求助?哪些是违规求助? 4947581
关于积分的说明 15153918
捐赠科研通 4834916
什么是DOI,文献DOI怎么找? 2589694
邀请新用户注册赠送积分活动 1543483
关于科研通互助平台的介绍 1501233