亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Research on concrete early shrinkage characteristics based on machine learning algorithms for multi-objective optimization

收缩率 算法 计算机科学 优化算法 机器学习 人工智能 结构工程 工程制图 工程类 数学优化 数学
作者
Jianqun Wang,Heng Liu,Junbo Sun,Bo Huang,Yufei Wang,Hongyu Zhao,Mohamed Saafi,Xiangyu Wang
出处
期刊:Journal of building engineering [Elsevier BV]
卷期号:89: 109415-109415 被引量:12
标识
DOI:10.1016/j.jobe.2024.109415
摘要

Cracking phenomena in tunnel side wall structures (TSWS) increasingly jeopardize their longevity due to water leakage, reinforcement corrosion, and eventual collapse. The primary contributor, early-age shrinkage (EAS) induced by hydration reactions, significantly undermines structural stability and durability. The integration of expansion agents (EA) and fibers presents a low-cost, efficient strategy to counteract EAS-induced cracking. Despite its promise, limited research on the influencing factors constrains its broader application. This study delves into the impacts of EA content, the CaO-MgO ratio, and fiber reinforcement on flexural strength (FS), compressive strength (CS), and EAS, revealing a complex interplay where EA and CaO content detrimentally affect mechanical properties yet beneficially influence EAS. Results showed that EA and CaO content had negative effects on the mechanical properties, but had positive effect on EAS. Additionally, Random Forest (RF) was developed with hyperparameters refined via the firefly algorithm (FA) based on the experimental data. The validity of the built RF-FA models was verified by substantial correlation coefficients and low root-mean-square errors. Subsequently, a coFA-based firefly algorithm (MOFA) was proposed to optimise tri-objectives of mechanical properties, EAS, and cost simultaneously. The Pareto fronts were obtained effectively for the optimal mixture design. This study contributes to its practical implications, offering a scientifically grounded approach to enhancing TSWS concrete design for improved performance and durability.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
10秒前
李健应助ceeray23采纳,获得20
13秒前
27秒前
43秒前
所所应助ygl0217采纳,获得10
53秒前
58秒前
59秒前
ygl0217发布了新的文献求助10
1分钟前
1分钟前
ceeray23发布了新的文献求助20
1分钟前
隐形曼青应助ygl0217采纳,获得10
1分钟前
1分钟前
灵波应助科研通管家采纳,获得10
1分钟前
星辰大海应助科研通管家采纳,获得30
1分钟前
馆长举报奶酪包求助涉嫌违规
1分钟前
平常以云完成签到 ,获得积分10
1分钟前
Sylvia关注了科研通微信公众号
2分钟前
Bin完成签到,获得积分10
2分钟前
2分钟前
ygl0217发布了新的文献求助10
2分钟前
灵巧的以亦完成签到 ,获得积分10
2分钟前
馆长举报Zachary求助涉嫌违规
2分钟前
Sylvia发布了新的文献求助10
2分钟前
2分钟前
2分钟前
3分钟前
健壮的翎完成签到,获得积分10
3分钟前
馆长举报Masetti1求助涉嫌违规
3分钟前
量子星尘发布了新的文献求助10
3分钟前
ttxxcdx完成签到 ,获得积分10
4分钟前
4分钟前
祥子发布了新的文献求助10
4分钟前
4分钟前
HYQ完成签到 ,获得积分10
4分钟前
Jasper应助OCDer采纳,获得10
4分钟前
5分钟前
OCDer完成签到,获得积分0
5分钟前
5分钟前
OCDer发布了新的文献求助10
5分钟前
5分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
An overview of orchard cover crop management 1000
二维材料在应力作用下的力学行为和层间耦合特性研究 600
Schifanoia : notizie dell'istituto di studi rinascimentali di Ferrara : 66/67, 1/2, 2024 470
Laboratory Animal Technician TRAINING MANUAL WORKBOOK 2012 edtion 400
Efficacy and safety of ciprofol versus propofol in hysteroscopy: a systematic review and meta-analysis 400
Progress and Regression 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4834409
求助须知:如何正确求助?哪些是违规求助? 4138281
关于积分的说明 12808243
捐赠科研通 3882014
什么是DOI,文献DOI怎么找? 2134977
邀请新用户注册赠送积分活动 1155023
关于科研通互助平台的介绍 1054202