Glycosyltransferase-related prognostic and diagnostic biomarkers of uterine corpus endometrial carcinoma

单变量 逻辑回归 肿瘤科 比例危险模型 内科学 生物 计算生物学 医学 多元统计 计算机科学 机器学习
作者
Jiaoqi Wu,Xiaozhu Zhou,Jie Ren,Zhen Zhang,Haoyu Ju,Xiaoqi Diao,Shuyi Jiang,Jing Zhang
出处
期刊:Computers in Biology and Medicine [Elsevier BV]
卷期号:163: 107164-107164 被引量:16
标识
DOI:10.1016/j.compbiomed.2023.107164
摘要

Uterine corpus endometrial carcinoma (UCEC) has a strong ability of invasion and metastasis, high recurrence rate, and poor survival. Glycosyltransferases are one of the most important enzymes that coordinate the glycosylation process, and abnormal modification of proteins by glycosyltransferases is closely related to the occurrence and development of cancer. However, there were fewer reports on glycosyltransferase related biomarkers in UCEC. In this paper, based on the UCEC transcriptome data published on The Cancer Genome Atlas (TCGA), we predicted the relationship between the expression of glycosyltransferase-related genes (GTs) and the diagnosis and prognosis of UCEC using bioinformatics methods. And validation of model genes by clinical samples. We used 4 methods: generalized linear model (GLM), random forest (RF), support vector machine (SVM) and extreme gradient boosting (XGB) to screen biomarkers with diagnostic significance, and the binary logistic regression was used to establish a diagnostic model for the 2-GTs (AUC = 0.979). And the diagnostic model was validated using a GEO external database (AUC = 0.978). Moreover, a prognostic model for the 6-GTs was developed using univariate, Lasso, and multivariate Cox regression analyses, and the model was made more stable by internal validation using the bootstrap. In addition, risk score is closely related to immune microenvironment (TME), immune infiltration, mutation, immunotherapy and chemotherapy. Overall, this study provides novel biomarkers for the diagnosis and prognosis of UCEC, and the models established by these biomarkers can also provide a good reference for individualized and precision medicine in UCEC.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
2秒前
3秒前
刘成财发布了新的文献求助10
3秒前
4秒前
踏实雨发布了新的文献求助10
4秒前
摘星012发布了新的文献求助10
5秒前
5秒前
共享精神应助乔晶采纳,获得10
7秒前
8秒前
shelemi发布了新的文献求助10
8秒前
8秒前
9秒前
枳甜发布了新的文献求助10
11秒前
李健的小迷弟应助刘成财采纳,获得10
12秒前
顾矜应助刘成财采纳,获得10
12秒前
ding应助刘成财采纳,获得10
12秒前
TAN完成签到,获得积分10
12秒前
jackynl发布了新的文献求助10
13秒前
14秒前
Yola完成签到,获得积分10
14秒前
科研通AI5应助黄凯采纳,获得150
14秒前
14秒前
ding应助迅速的八宝粥采纳,获得10
15秒前
15秒前
哈哈2022完成签到,获得积分10
18秒前
walker发布了新的文献求助10
19秒前
22秒前
赵一丁完成签到,获得积分10
23秒前
24秒前
24秒前
xufund发布了新的文献求助20
25秒前
苹果追命发布了新的文献求助10
26秒前
27秒前
郑师傅发布了新的文献求助30
27秒前
28秒前
Yy杨优秀完成签到 ,获得积分10
28秒前
花花123发布了新的文献求助10
28秒前
walker完成签到,获得积分10
29秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
Platinum-group elements : mineralogy, geology, recovery 260
Geopora asiatica sp. nov. from Pakistan 230
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3780569
求助须知:如何正确求助?哪些是违规求助? 3326080
关于积分的说明 10225440
捐赠科研通 3041148
什么是DOI,文献DOI怎么找? 1669215
邀请新用户注册赠送积分活动 799028
科研通“疑难数据库(出版商)”最低求助积分说明 758669