清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Neuromorphic devices assisted by machine learning algorithms

神经形态工程学 计算机科学 人工智能 机器学习 算法 计算机体系结构 人工神经网络
作者
Ziwei Huo,Qijun Sun,Jinran Yu,Yingjian Wei,Yifei Wang,Jeong Ho Cho,Zhong Lin Wang
出处
期刊:International journal of extreme manufacturing [IOP Publishing]
卷期号:7 (4): 042007-042007 被引量:15
标识
DOI:10.1088/2631-7990/adba1e
摘要

Abstract Neuromorphic computing extends beyond sequential processing modalities and outperforms traditional von Neumann architectures in implementing more complicated tasks, e.g., pattern processing, image recognition, and decision making. It features parallel interconnected neural networks, high fault tolerance, robustness, autonomous learning capability, and ultralow energy dissipation. The algorithms of artificial neural network (ANN) have also been widely used because of their facile self-organization and self-learning capabilities, which mimic those of the human brain. To some extent, ANN reflects several basic functions of the human brain and can be efficiently integrated into neuromorphic devices to perform neuromorphic computations. This review highlights recent advances in neuromorphic devices assisted by machine learning algorithms. First, the basic structure of simple neuron models inspired by biological neurons and the information processing in simple neural networks are particularly discussed. Second, the fabrication and research progress of neuromorphic devices are presented regarding to materials and structures. Furthermore, the fabrication of neuromorphic devices, including stand-alone neuromorphic devices, neuromorphic device arrays, and integrated neuromorphic systems, is discussed and demonstrated with reference to some respective studies. The applications of neuromorphic devices assisted by machine learning algorithms in different fields are categorized and investigated. Finally, perspectives, suggestions, and potential solutions to the current challenges of neuromorphic devices are provided.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
5秒前
6秒前
7秒前
Linda发布了新的文献求助30
10秒前
TiAmo完成签到 ,获得积分10
14秒前
20秒前
24秒前
R先生完成签到,获得积分10
27秒前
34秒前
MM发布了新的文献求助10
37秒前
40秒前
40秒前
星辰大海应助fishway采纳,获得10
47秒前
56秒前
fishway完成签到,获得积分10
1分钟前
1分钟前
fishway发布了新的文献求助10
1分钟前
好难下载完成签到,获得积分10
1分钟前
1分钟前
久顾南川完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
李爱国应助科研通管家采纳,获得10
1分钟前
科研通AI6.1应助剑K采纳,获得10
1分钟前
1分钟前
2分钟前
2分钟前
剑K发布了新的文献求助10
2分钟前
2分钟前
2分钟前
FashionBoy应助千里缠娟采纳,获得10
2分钟前
剑K完成签到,获得积分10
2分钟前
坚强觅珍完成签到 ,获得积分10
2分钟前
Tong完成签到,获得积分0
2分钟前
gmc完成签到 ,获得积分10
2分钟前
天天赚积分完成签到,获得积分10
2分钟前
3分钟前
呆呆的猕猴桃完成签到 ,获得积分10
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Russian Foreign Policy: Change and Continuity 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5732677
求助须知:如何正确求助?哪些是违规求助? 5341756
关于积分的说明 15322424
捐赠科研通 4878098
什么是DOI,文献DOI怎么找? 2620950
邀请新用户注册赠送积分活动 1570081
关于科研通互助平台的介绍 1526853