Multiomics analysis provides insights into musk secretion in muskrat and musk deer

分泌物 计算生物学 生物 动物 内分泌学
作者
Tao Wang,Maosen Yang,Xin Shi,Shilin Tian,Yán Li,Wenqian Xie,Zhengting Zou,Dong Leng,Ming Zhang,Chengli Zheng,Chungang Feng,Bo Zeng,Xiaolan Fan,Huimin Qiu,Jing Li,Guijun Zhao,Zhengrong Yuan,Diyan Li,Hang Jie
出处
期刊:GigaScience [University of Oxford]
卷期号:14 被引量:6
标识
DOI:10.1093/gigascience/giaf006
摘要

Musk, secreted by the musk gland of adult male musk-secreting mammals, holds significant pharmaceutical and cosmetic potential. However, understanding the molecular mechanisms of musk secretion remains limited, largely due to the lack of comprehensive multiomics analyses and available platforms for relevant species, such as muskrat (Ondatra zibethicus Linnaeus) and Chinese forest musk deer (Moschus berezovskii Flerov). We generated chromosome-level genome assemblies for the 2 species of muskrat (Ondatra zibethicus Linnaeus) and musk deer (Moschus berezovskii Flerov), along with 168 transcriptomes from various muskrat tissues. Comparative analysis with 11 other vertebrate genomes revealed genes and amino acid sites with signs of adaptive convergent evolution, primarily linked to lipid metabolism, cell cycle regulation, protein binding, and immunity. Single-cell RNA sequencing in muskrat musk glands identified increased acinar/glandular epithelial cells during secretion, highlighting the role of lipometabolism in gland development and evolution. Additionally, we developed MuskDB (http://muskdb.cn/home/), a freely accessible multiomics database platform for musk-secreting mammals. The study concludes that the evolution of musk secretion in muskrats and musk deer is likely driven by lipid metabolism and cell specialization. This underscores the complexity of the musk gland and calls for further investigation into musk secretion-specific genetic variants.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
简易发布了新的文献求助10
刚刚
万能图书馆应助千a采纳,获得30
1秒前
3秒前
ZWK发布了新的文献求助10
6秒前
毛毛完成签到,获得积分10
6秒前
7秒前
mermaid完成签到,获得积分10
8秒前
张海洋应助齐静春采纳,获得10
9秒前
憨憨鱼完成签到,获得积分10
10秒前
烟花应助Lisianthus采纳,获得10
10秒前
量子星尘发布了新的文献求助10
11秒前
雨曦发布了新的文献求助20
13秒前
乐乐应助小浣熊采纳,获得10
14秒前
14秒前
小巧冰烟完成签到 ,获得积分10
15秒前
丘比特应助高工采纳,获得10
17秒前
linci完成签到,获得积分10
17秒前
19秒前
商毛毛发布了新的文献求助10
25秒前
didida发布了新的文献求助10
26秒前
Lisianthus完成签到,获得积分20
26秒前
小二郎应助zyc采纳,获得10
28秒前
29秒前
香蕉觅云应助XMUh采纳,获得10
31秒前
31秒前
33秒前
33秒前
33秒前
34秒前
高工发布了新的文献求助10
34秒前
35秒前
风清扬应助雨曦采纳,获得10
35秒前
36秒前
37秒前
37秒前
issada发布了新的文献求助10
39秒前
39秒前
能干的妙芹完成签到,获得积分10
39秒前
zyc发布了新的文献求助10
39秒前
量子星尘发布了新的文献求助10
39秒前
高分求助中
The Oxford Encyclopedia of the History of Modern Psychology 2000
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 1200
Deutsche in China 1920-1950 1200
Applied Survey Data Analysis (第三版, 2025) 850
Mineral Deposits of Africa (1907-2023): Foundation for Future Exploration 800
The User Experience Team of One (2nd Edition) 600
 Introduction to Comparative Public Administration Administrative Systems and Reforms in Europe, Third Edition 3rd edition 590
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3881322
求助须知:如何正确求助?哪些是违规求助? 3423718
关于积分的说明 10735730
捐赠科研通 3148673
什么是DOI,文献DOI怎么找? 1737315
邀请新用户注册赠送积分活动 838802
科研通“疑难数据库(出版商)”最低求助积分说明 784087