Validating the Virtual Calendering Process With 3D‐Reconstructed Composite Electrode: An Optimization Framework for Electrode Design

压延 材料科学 微观结构 电极 电池(电) 阴极 电化学 复合材料 纳米技术 化学 物理化学 功率(物理) 物理 量子力学
作者
Jaejin Lim,Jihun Song,Kyung‐Geun Kim,Jin Kyo Koo,Hyobin Lee,Dongyoon Kang,Young‐Jun Kim,Joonam Park,Yong Min Lee
出处
期刊:Small [Wiley]
标识
DOI:10.1002/smll.202410485
摘要

Abstract Calendering is an essential fabrication step for lithium‐ion battery electrodes, aimed at achieving the target density through mechanical compression. During this process, the electrode's microstructure significantly deforms, affecting its electrochemical performance. Therefore, it is important to understand how the microstructure evolves during calendering and correlate these changes with electrochemical behavior. Despite tremendous experimental efforts, there are limitations in obtaining sufficient outcomes. In this regard, simulations offer valuable information; however, the highest priority is to develop a reliable modeling framework that reflects actual microstructural changes and establish a robust validating methodology. Without such a framework, computational predictions may not align with experimental results. This study develops a virtual calendering framework based on high‐resolution FIB‐SEM tomography images of a bimodal LiNi 0.6 Co 0.2 Mn 0.2 O 2 cathode with a mass loading of 19.8 mg cm −2 and 96 wt.% active material. The framework is rigorously validated through systematically designed experiments across various electrode densities (2.3–4.0 g cm −3 ) and further analysis of hidden microstructural features, such as ionic tortuosity, contact area, and crack structure through additional tomography analysis. The virtual calendering framework successfully predicts microstructural changes and electrochemical performance, offering a reliable pathway for identifying optimal design parameters in a time‐ and cost‐effective manner.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
李子龙发布了新的文献求助10
刚刚
GS草台班子应助lxcy0612采纳,获得30
2秒前
robin_1217完成签到,获得积分10
3秒前
3秒前
6秒前
科研通AI2S应助科研小白菜采纳,获得10
6秒前
长情巧曼完成签到,获得积分10
7秒前
吴彬发布了新的文献求助10
8秒前
开心白凝完成签到,获得积分10
8秒前
SciGPT应助暴躁的马里奥采纳,获得10
8秒前
9秒前
我是老大应助李子龙采纳,获得30
10秒前
研友_VZG7GZ应助ltt采纳,获得10
10秒前
13秒前
13秒前
CodeCraft应助白昼采纳,获得10
14秒前
14秒前
14秒前
桐桐应助哦是不是啊采纳,获得10
14秒前
活力的映阳完成签到,获得积分10
15秒前
16秒前
fdvs发布了新的文献求助10
17秒前
18秒前
DENG关注了科研通微信公众号
18秒前
20秒前
Deerlu完成签到,获得积分10
20秒前
希望天下0贩的0应助afeifei采纳,获得10
20秒前
烟花应助李政奇采纳,获得10
21秒前
22秒前
22秒前
23秒前
24秒前
26秒前
26秒前
27秒前
fdvs完成签到,获得积分10
27秒前
所所应助Jialing采纳,获得10
27秒前
天真书南完成签到,获得积分20
27秒前
27秒前
28秒前
高分求助中
The Oxford Encyclopedia of the History of Modern Psychology 1500
The Martian climate revisited: atmosphere and environment of a desert planet 800
Parametric Random Vibration 800
Happiness in the Nordic World 500
城市流域产汇流机理及其驱动要素研究—以北京市为例 500
Drug distribution in mammals 500
Single Element Semiconductors: Properties and Devices 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3859841
求助须知:如何正确求助?哪些是违规求助? 3401849
关于积分的说明 10626276
捐赠科研通 3124635
什么是DOI,文献DOI怎么找? 1723070
邀请新用户注册赠送积分活动 829796
科研通“疑难数据库(出版商)”最低求助积分说明 778484