SFAN: Selective Filter and Alignment Network for Cross-Modal Retrieval

计算机科学 滤波器(信号处理) 情态动词 钥匙(锁) 模态(人机交互) 人工智能 相似性(几何) 模式识别(心理学) 边距(机器学习) 机器学习 计算机视觉 图像(数学) 计算机安全 化学 高分子化学
作者
Yongle Huang,Zedong Liu,Shijie Sun,Ningning Cui,Jianxin Li
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:36 (10): 18792-18804
标识
DOI:10.1109/tnnls.2025.3577292
摘要

Bridging the gap between visual and textual modalities effectively has consistently been a key challenge in cross-modal retrieval. Fine-grained matching approaches improve performance by precisely aligning salient region features in visual modality with word embeddings in textual modality. However, how to effectively and efficiently filter out irrelevant features (e.g., irrelevant background regions and nonmeaningful prepositions) in multimodality remains a significant challenge. Furthermore, capturing key cross-modal relationships while minimizing misalignment interference is crucial for effective cross-modal retrieval. In this work, we propose a novel approach called the selective filter and alignment network (SFAN) to tackle these challenges. First, we propose modality-specific selective filter modules (SFMs) to selectively and implicitly filter out redundant information within each modality. We then propose the state-space models (SSMs)-based selective alignment module (SAM) to selectively capture key correspondences and reduce the disturbance of irrelevant associations. Finally, we utilize a fusion operation to combine these embeddings from both SFM and SAM to derive the final embeddings for similarity computation. Extensive experiments on the Flickr30k, MS-COCO, and MSR-VTT datasets reveal that our proposed SFAN can effectively learn robust patterns, significantly outperforming the state-of-the-art (SOTA) cross-modal retrieval methods by a wide margin.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
yuan关注了科研通微信公众号
刚刚
Dr. Chen完成签到,获得积分10
刚刚
刚刚
1秒前
1秒前
绝味大姨发布了新的文献求助10
1秒前
共享精神应助远方的大树采纳,获得10
2秒前
3秒前
4秒前
4秒前
小李完成签到,获得积分10
4秒前
luan完成签到,获得积分10
4秒前
褚幻香发布了新的文献求助30
5秒前
5秒前
jiangxxxx1发布了新的文献求助30
5秒前
小王完成签到,获得积分10
6秒前
llwxx完成签到,获得积分10
6秒前
盲盒完成签到,获得积分10
7秒前
沉静凡松发布了新的文献求助10
7秒前
7秒前
我是老大应助lizi采纳,获得20
7秒前
Dr. Chen发布了新的文献求助10
9秒前
哪里有人发布了新的文献求助10
9秒前
hsy发布了新的文献求助10
10秒前
12秒前
JingjingWang发布了新的文献求助10
12秒前
善学以致用应助hsy采纳,获得10
13秒前
Mu完成签到,获得积分10
13秒前
jiangxxxx1完成签到,获得积分20
14秒前
15秒前
华仔应助神勇的怜寒采纳,获得10
17秒前
科目三应助cjj采纳,获得10
17秒前
FashionBoy应助cjj采纳,获得10
17秒前
乐乐应助cjj采纳,获得10
17秒前
小二郎应助cjj采纳,获得10
17秒前
脑洞疼应助cjj采纳,获得10
17秒前
852应助cjj采纳,获得10
17秒前
852应助cjj采纳,获得10
17秒前
打打应助cjj采纳,获得30
17秒前
高源发布了新的文献求助10
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
Comparing natural with chemical additive production 500
Machine Learning in Chemistry 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.) 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5196870
求助须知:如何正确求助?哪些是违规求助? 4378399
关于积分的说明 13636182
捐赠科研通 4233982
什么是DOI,文献DOI怎么找? 2322524
邀请新用户注册赠送积分活动 1320667
关于科研通互助平台的介绍 1271135