Data Fusion Enhanced High-Dimensional SERS Fingerprints Construction via Dual-Wavelength and Multisubstrate Strategy for Precise Wastewater Identification

化学 鉴定(生物学) 分析物 废水 融合 指纹(计算) 光谱特征 人工智能 传感器融合 生物系统 色谱法 模式识别(心理学) 化学计量学 计算机科学 废物管理 遥感 地质学 生物 工程类 植物 哲学 语言学
作者
Xueqing Wang,Lan Wei,Fan Li,Zhangmei Hu,Meikun Fan
出处
期刊:Analytical Chemistry [American Chemical Society]
卷期号:97 (25): 13551-13560
标识
DOI:10.1021/acs.analchem.5c02022
摘要

It is well-known that traditional label-free surface-enhanced Raman spectroscopy (SERS) can capture fingerprint information on analyte, providing a foundation for target identification and differentiation. However, the conventional one-dimensional spectral data obtained through traditional SERS methods is insufficient for characterizing samples with complex chemical compositions, such as wastewater, or for tackling more intricate challenges, including tracing pollution sources, where a more comprehensive analytical profile is necessary. Herein, we introduce "SERSynergy", a data-fusion-driven machine learning approach that integrates dual-wavelength and multisubstrate data to generate a holistic SERS fingerprint, which allows for precise and robust wastewater identification. This method leverages complementary spectral features of wastewater samples by collecting a total of 12,000 spectra using four types of noble metal nanoparticles under two excitation wavelengths. A hybrid feature-decision fusion strategy cross-combined spectral features from various conditions to form high-dimensional fingerprints, which were then evaluated using optimized machine learning models and consolidated via probability-level fusion. The "SERSynergy" method demonstrated an identification accuracy of up to 99.67% for wastewater samples. Furthermore, when validated with blind sample testing, the method maintained an accuracy of 96.67%. Overall, the developed approach shows great promise for efficiently and accurately identifying wastewater samples, and it has potential applications in the precise acquisition of spectral features and identity discrimination in complex matrix samples.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Jasper应助红叶采纳,获得10
刚刚
1秒前
1秒前
lenaimiao发布了新的文献求助10
1秒前
笑点低的初瑶完成签到,获得积分10
1秒前
光军完成签到,获得积分10
2秒前
boytoa完成签到,获得积分10
3秒前
万能图书馆应助jeonghan采纳,获得10
3秒前
开朗的紫萍完成签到,获得积分10
3秒前
Lucas应助迷你的蜜蜂采纳,获得10
3秒前
khc发布了新的文献求助10
4秒前
cx发布了新的文献求助10
4秒前
shanshan__完成签到,获得积分10
5秒前
轻松盼雁完成签到,获得积分10
5秒前
Cynthia发布了新的文献求助10
5秒前
6秒前
7秒前
7秒前
StuXuhao发布了新的文献求助10
8秒前
Kyrene完成签到,获得积分10
9秒前
10秒前
12秒前
sstargazer发布了新的文献求助10
12秒前
俭朴凌青发布了新的文献求助10
12秒前
Jasper应助鑫淼采纳,获得10
13秒前
13秒前
JamesPei应助文静采纳,获得10
14秒前
cx完成签到,获得积分10
14秒前
14秒前
15秒前
Jasper应助23采纳,获得10
16秒前
老迟到的鬼神完成签到 ,获得积分10
17秒前
AAAAAA完成签到,获得积分10
17秒前
动听的问晴关注了科研通微信公众号
17秒前
64658应助尹不愁采纳,获得10
18秒前
19秒前
20秒前
20秒前
Yeong完成签到,获得积分10
20秒前
fanfan55完成签到,获得积分10
21秒前
高分求助中
Comprehensive Chirality Second Edition 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
Binary Alloy Phase Diagrams, 2nd Edition 1000
Air Transportation A Global Management Perspective 9th Edition 700
DESIGN GUIDE FOR SHIPBOARD AIRBORNE NOISE CONTROL 600
NMR in Plants and Soils: New Developments in Time-domain NMR and Imaging 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4978255
求助须知:如何正确求助?哪些是违规求助? 4231265
关于积分的说明 13178938
捐赠科研通 4022032
什么是DOI,文献DOI怎么找? 2200547
邀请新用户注册赠送积分活动 1213008
关于科研通互助平台的介绍 1129272