Denoised and Dynamic Alignment Enhancement for Zero-Shot Learning

人工智能 计算机科学 零(语言学) 计算机视觉 模式识别(心理学) 算法 语言学 哲学
作者
Jiannan Ge,Zhihang Liu,Pandeng Li,Lingxi Xie,Yongdong Zhang,Qi Tian,Hongtao Xie
出处
期刊:IEEE transactions on image processing [Institute of Electrical and Electronics Engineers]
卷期号:34: 1501-1515 被引量:2
标识
DOI:10.1109/tip.2025.3544481
摘要

Zero-shot learning (ZSL) focuses on recognizing unseen categories by aligning visual features with semantic information. Recent advancements have shown that aligning each attribute with its corresponding visual region significantly improves zero-shot learning performance. However, the crude semantic proxies used in these methods fail to capture the varied appearances of each attribute, and are also easily confused by the presence of semantically redundant backgrounds, leading to suboptimal alignment. To combat these issues, we introduce a novel Alignment-Enhanced Network (AENet), designed to denoise the visual features and dynamically perceive semantic information, thus enhancing visual-semantic alignment. Our approach comprises two key innovations. (1) A visual denoising encoder, employing a class-agnostic mask to filter out semantically redundant visual information, thus producing refined visual features adaptable to unseen classes. (2) A dynamic semantic generator that crafts content-aware semantic proxies adaptively, steered by visual features, enabling AENet to discriminate fine-grained variations in visual contents. Additionally, we integrate a cross-fusion module to ensure comprehensive interaction between the denoised visual features and the generated dynamic semantic proxies, further facilitating visual-semantic alignment. Through extensive experiments across three datasets, the proposed method demonstrates that it narrows down the visual-semantic gap and sets a new benchmark in this setting.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
略略略发布了新的文献求助10
3秒前
州府十三完成签到,获得积分10
3秒前
3秒前
LXY给LXY的求助进行了留言
3秒前
宁宁完成签到,获得积分20
3秒前
陈少华完成签到 ,获得积分10
3秒前
4秒前
西宁完成签到,获得积分10
4秒前
Akim应助L318采纳,获得10
5秒前
田様应助怀念逸采纳,获得10
5秒前
史小菜发布了新的文献求助40
5秒前
5秒前
5秒前
6秒前
轻松碧玉完成签到,获得积分20
6秒前
6秒前
暴龙战士完成签到,获得积分10
6秒前
7秒前
janin完成签到,获得积分10
7秒前
7秒前
7秒前
希望天下0贩的0应助song采纳,获得10
8秒前
8秒前
45465465456发布了新的文献求助10
9秒前
9秒前
Akim应助盐碱地的小草采纳,获得30
10秒前
10秒前
SiO2发布了新的文献求助10
11秒前
11秒前
夏清小山羊完成签到,获得积分10
12秒前
Hello应助Xzit2545采纳,获得10
12秒前
英姑应助轻松碧玉采纳,获得10
12秒前
aw发布了新的文献求助10
12秒前
12秒前
DAY关注了科研通微信公众号
13秒前
13秒前
13秒前
阳胜军完成签到,获得积分10
14秒前
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exosomes Pipeline Insight, 2025 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5649362
求助须知:如何正确求助?哪些是违规求助? 4777995
关于积分的说明 15047791
捐赠科研通 4808307
什么是DOI,文献DOI怎么找? 2571418
邀请新用户注册赠送积分活动 1527884
关于科研通互助平台的介绍 1486774