Application of Quantitative Interpretability to Evaluate CNN-Based Models for Medical Image Classification

可解释性 计算机科学 人工智能 上下文图像分类 模式识别(心理学) 图像(数学) 医学影像学 机器学习
作者
Naying Cui,Yingjie Wu,Guojiang Xin,Jiaze Wu,Liqin Zhong,Hao Liang
出处
期刊:IEEE Access [Institute of Electrical and Electronics Engineers]
卷期号:13: 89386-89398
标识
DOI:10.1109/access.2025.3567775
摘要

Convolutional Neural Networks (CNNs) dominate medical image classification, yet their “black box” nature limits understanding of their decision-making process. This study applies quantitative interpretability metrics to evaluate CNN performance in stained tongue coating recognition and compare with traditional metrics. We trained four classical CNN models (ResNet18, ResNet50, VGG19, and AlexNet) on a dataset of 2,008 tongue coating images, with external validation on 381 new images. Class Activation Mapping (CAM) algorithms generated heatmaps visualizing influential regions. The Heatmap Assisted Accuracy Score (HAAS) was utilized to assess feature attribution quality. All models achieved high classification performance on the test set (accuracy >0.92, precision >0.89, recall >0.91), but VGG19 and AlexNet performed poorly on external validation. Interpretability analysis revealed that VGG19 and AlexNet deviated from regions of interest, while ResNet models achieved significantly higher HAAS scores. ResNet50 emerged as the best model in external validation (accuracy =0.900, precision =0.869, recall =0.911), consistent with its superior interpretability metrics (Eigen-CAM HAAS=1.548). Our findings demonstrate that interpretability metrics more accurately reflect CNN performance before external validation, offering valuable tools for understanding model behavior and enhancing transparency in medical image classification.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
所所应助hsa_ID采纳,获得10
刚刚
1秒前
changping应助nishuixingzhou采纳,获得50
3秒前
杰杰大叔发布了新的文献求助10
4秒前
火焰迷踪发布了新的文献求助10
5秒前
zcq完成签到 ,获得积分10
6秒前
7秒前
9秒前
南无三完成签到,获得积分10
10秒前
子木发布了新的文献求助10
10秒前
乔达摩悉达多完成签到 ,获得积分10
12秒前
蟪蛄鸪发布了新的文献求助10
12秒前
文静的绯完成签到,获得积分10
12秒前
Demon发布了新的文献求助10
14秒前
Strongly完成签到 ,获得积分10
16秒前
xcx发布了新的文献求助10
16秒前
16秒前
19秒前
pretty完成签到 ,获得积分10
19秒前
Bressanone完成签到,获得积分10
21秒前
斯文败类应助11采纳,获得10
21秒前
阿玖完成签到 ,获得积分10
21秒前
22秒前
暮然完成签到,获得积分10
23秒前
wlscj应助臧佳莹采纳,获得20
23秒前
有热心愿意完成签到,获得积分10
25秒前
SciGPT应助火焰迷踪采纳,获得10
26秒前
27秒前
28秒前
bkagyin应助酷炫的冰淇淋采纳,获得10
30秒前
刘书洋发布了新的文献求助10
31秒前
21完成签到,获得积分10
31秒前
斯文败类应助Doc.Wang采纳,获得10
31秒前
32秒前
32秒前
33秒前
33秒前
35秒前
wu发布了新的文献求助10
38秒前
JUGG发布了新的文献求助10
39秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Petrucci's General Chemistry: Principles and Modern Applications, 12th edition 600
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
Constitutional and Administrative Law 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5300721
求助须知:如何正确求助?哪些是违规求助? 4448507
关于积分的说明 13846121
捐赠科研通 4334281
什么是DOI,文献DOI怎么找? 2379527
邀请新用户注册赠送积分活动 1374643
关于科研通互助平台的介绍 1340312