Elucidating stroke etiology through lipidomics of thrombi and plasma in acute ischemic stroke patients undergoing endovascular thrombectomy

病因学 脂类学 医学 血栓 冲程(发动机) 癌症 内科学 缺血性中风 心脏病学 胃肠病学 病理 生物信息学 缺血 生物 机械工程 工程类
作者
Chih‐Ning Cheng,Chung‐Wei Lee,Ching-Hua Lee,Sung‐Chun Tang,Ching‐Hua Kuo
出处
期刊:Journal of Cerebral Blood Flow and Metabolism [SAGE Publishing]
标识
DOI:10.1177/0271678x251327944
摘要

Acute ischemic stroke (AIS) requires detailed etiology information to guide optimal management. Given the pivotal role of lipids in AIS, we conducted a comprehensive lipidomics analysis of paired thrombi and plasma from AIS patients, correlating the findings with stroke etiology. Patients were recruited across four etiologies: cardioembolism (CE), large artery atherosclerosis (LAA), active cancer (Cancer), and undetermined. Plasma and thrombi were collected before and during endovascular thrombectomy and analyzed using in-house targeted lipidomics. Among 51 patients (37 CE, 7 LAA, 4 Cancer, and 3 undetermined), we identified 37 and 70 lipid species significantly different between thrombi in CE and LAA, and CE and Cancer, respectively (FDR-corrected P < 0.05). No significant differences were observed in plasma. Notably, 21 diacylglycerols and 11 polyunsaturated triacylglycerols were depleted (2.5 to 12 folds) in LAA compared to CE, while 10 ceramides and 57 glycerophospholipids were elevated in Cancer. With 80% validation accuracy, 29 and 59 lipids distinguished LAA and Cancer from CE, respectively. A neural network model using these lipids effectively classified undetermined patients. This study emphasizes the significance of thrombus lipids in distinguishing between LAA, CE, and Cancer etiologies in AIS, enhancing our understanding of stroke pathophysiology and informing future clinical managements.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
等待冬亦应助123采纳,获得20
1秒前
Szhou发布了新的文献求助10
2秒前
Owen应助sajdhjas采纳,获得10
3秒前
完美世界应助杨九斤Jenney采纳,获得10
3秒前
4秒前
毛bobi完成签到,获得积分10
4秒前
joe发布了新的文献求助10
5秒前
5秒前
6秒前
aaaaa完成签到,获得积分10
7秒前
7秒前
小树苗完成签到,获得积分10
8秒前
9秒前
老木虫发布了新的文献求助10
9秒前
无花果应助天凉好个秋秋采纳,获得10
10秒前
Jeanie完成签到,获得积分10
10秒前
付志远发布了新的文献求助10
11秒前
11秒前
超级李包包完成签到,获得积分10
11秒前
12秒前
14秒前
小熊宝宝完成签到,获得积分20
15秒前
郭子豪发布了新的文献求助10
15秒前
王星辰发布了新的文献求助10
15秒前
16秒前
16秒前
16秒前
song发布了新的文献求助10
18秒前
慕青应助joe采纳,获得10
19秒前
sajdhjas发布了新的文献求助10
21秒前
21秒前
21秒前
23秒前
和谐的小懒虫完成签到,获得积分10
24秒前
飞在夏夜的猫完成签到,获得积分10
24秒前
24秒前
25秒前
Alen发布了新的文献求助10
27秒前
ouwenwen完成签到,获得积分20
27秒前
莫不静好完成签到,获得积分20
27秒前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Deciphering Earth's History: the Practice of Stratigraphy 200
New Syntheses with Carbon Monoxide 200
Quanterion Automated Databook NPRD-2023 200
Interpretability and Explainability in AI Using Python 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3835045
求助须知:如何正确求助?哪些是违规求助? 3377563
关于积分的说明 10499197
捐赠科研通 3097057
什么是DOI,文献DOI怎么找? 1705466
邀请新用户注册赠送积分活动 820611
科研通“疑难数据库(出版商)”最低求助积分说明 772130