Regulating peroxidase‐mimic activity of iron oxide nanozymes through size modulation: electronic structure and specific surface area

材料科学 纳米技术 调制(音乐) 氧化铁 氧化物 曲面(拓扑) 化学工程 冶金 物理 几何学 声学 数学 工程类
作者
Shenfang Li,Fan Zhao,Hou‐Yong Yu,Zhengtao Xu,Zeeshan Ali,Wangchang Li,Ying Yao,Liang Qiao,Jingwu Zheng,Juan Li,Shenglei Che,Jing Yu
出处
期刊:Rare Metals [Springer Nature]
卷期号:44 (9): 6375-6387 被引量:6
标识
DOI:10.1007/s12598-025-03349-0
摘要

Abstract Iron oxide nanoparticles (IONPs) with intrinsic peroxidase (POD)‐mimic activity have gained significant attention as nanozymes. Reducing sizes of IONPs is the mostly applied strategy to boost their enzymatic activity due to their high specific surface areas. Herein, we synthesized a series of uniformly sized IONPs ranging from 3.17 to 21.2 nm, and found that POD activity of IONPs is not monotone increased by reducing their sizes, with the optimal size of 7.82 nm rather than smaller sized 3.17 nm. The reason for this unnormal phenomenon is that electronic structure also had great influence on POD activity, especially at the ultrasmall size region. Since Fe 2+ are with higher enzymatic activity than Fe 3+ , 3.17 nm IONPs although have the largest specific surface area, are prone to be oxidized, which reduced their iron content and ratio of Fe 2+ to Fe 3+ , and consequently decreased their POD activity. By intentionally oxidized 7.82 nm IONPs in air, POD activity was obviously reduced, illustrating electronic structure cannot be overlooked. At the larger sized region ranging from 7.82 to 21.2 nm, oxidation degree of IONPs is similar, and surface electronic structure had a negligible effect on POD activity, and therefore, POD activity is predominantly influenced by specific surface area. By using the optimized 7.82 nm IONPs, tumor growth was obviously inhibited, demonstrating their potential in cancer therapeutics. Our results reveal that the designing of nanozymes should comprehensively balance their influence of surface electronic structure and specific surface area.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
鲤鱼访天完成签到,获得积分10
1秒前
3秒前
斯文败类应助积极的音响采纳,获得10
3秒前
orixero应助发文章采纳,获得10
3秒前
4秒前
4秒前
月光完成签到,获得积分10
4秒前
4秒前
daoketuo完成签到,获得积分10
4秒前
深情安青应助艺玲采纳,获得10
5秒前
5秒前
张杰发布了新的文献求助10
5秒前
5秒前
6秒前
pumpkin发布了新的文献求助10
6秒前
7秒前
7秒前
8秒前
8秒前
8秒前
骑驴找马完成签到,获得积分20
8秒前
Luna_aaa举报宋宋求助涉嫌违规
9秒前
9秒前
9秒前
刘浩完成签到,获得积分20
9秒前
芝士发布了新的文献求助10
10秒前
10秒前
10秒前
10秒前
浮游应助科研通管家采纳,获得10
10秒前
asdfzxcv应助科研通管家采纳,获得10
10秒前
wwy应助科研通管家采纳,获得10
10秒前
英俊的铭应助科研通管家采纳,获得10
11秒前
BowieHuang应助科研通管家采纳,获得10
11秒前
Ava应助科研通管家采纳,获得10
11秒前
张晓慧应助科研通管家采纳,获得10
11秒前
浮游应助科研通管家采纳,获得10
11秒前
骑驴找马发布了新的文献求助20
11秒前
嘉佳伽应助科研通管家采纳,获得10
11秒前
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Exosomes Pipeline Insight, 2025 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5649113
求助须知:如何正确求助?哪些是违规求助? 4777225
关于积分的说明 15046529
捐赠科研通 4807973
什么是DOI,文献DOI怎么找? 2571189
邀请新用户注册赠送积分活动 1527771
关于科研通互助平台的介绍 1486697