Using GPT-4o for CAD-RADS feature extraction and categorization with free-text coronary CT Angiography reports (Preprint)

分类 双雷达 冠状动脉造影 计算机辅助设计 预印本 特征(语言学) 计算机科学 医学 放射科 人工智能 特征提取 内科学 乳腺摄影术 工程类 万维网 语言学 哲学 癌症 工程制图 乳腺癌 心肌梗塞
作者
Youmei Chen,Mengshi Dong,Jie Sun,Zhanao Meng,Yiqing Yang,Abudushalamu Muhetaier,Chao Li,Jie Qin
出处
期刊:JMIR medical informatics [JMIR Publications]
卷期号:13: e70967-e70967
标识
DOI:10.2196/70967
摘要

Abstract Background Despite the Coronary Artery Reporting and Data System (CAD-RADS) providing a standardized approach, radiologists continue to favor free-text reports. This preference creates significant challenges for data extraction and analysis in longitudinal studies, potentially limiting large-scale research and quality assessment initiatives. Objective To evaluate the ability of the generative pre-trained transformer (GPT)-4o model to convert real-world coronary computed tomography angiography (CCTA) free-text reports into structured data and automatically identify CAD-RADS categories and P categories. Methods This retrospective study analyzed CCTA reports from January 2024 and July 2024. A subset of 25 reports was used for prompt engineering to instruct the large language models (LLMs) in extracting CAD-RADS categories, P categories, and the presence of myocardial bridges and noncalcified plaques. Reports were processed using the GPT-4o API (application programming interface) and custom Python scripts. The ground truth was established by radiologists based on the CAD-RADS 2.0 guidelines. Model performance was assessed using accuracy, sensitivity, specificity, and F 1 -score. Intrarater reliability was assessed using Cohen κ coefficient. Results Among 999 patients (median age 66 y, range 58‐74; 650 males), CAD-RADS categorization showed accuracy of 0.98‐1.00 (95% CI 0.9730‐1.0000), sensitivity of 0.95‐1.00 (95% CI 0.9191‐1.0000), specificity of 0.98‐1.00 (95% CI 0.9669‐1.0000), and F 1 -score of 0.96‐1.00 (95% CI 0.9253‐1.0000). P categories demonstrated accuracy of 0.97‐1.00 (95% CI 0.9569‐0.9990), sensitivity from 0.90 to 1.00 (95% CI 0.8085‐1.0000), specificity from 0.97 to 1.00 (95% CI 0.9533‐1.0000), and F 1 -score from 0.91 to 0.99 (95% CI 0.8377‐0.9967). Myocardial bridge detection achieved an accuracy of 0.98 (95% CI 0.9680‐0.9870), and noncalcified coronary plaques detection showed an accuracy of 0.98 (95% CI 0.9680‐0.9870). Cohen κ values for all classifications exceeded 0.98. Conclusions The GPT-4o model efficiently and accurately converts CCTA free-text reports into structured data, excelling in CAD-RADS classification, plaque burden assessment, and detection of myocardial bridges and calcified plaques.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
菜菜爱吃花完成签到 ,获得积分10
刚刚
CCC发布了新的文献求助10
1秒前
2秒前
外向不愁完成签到,获得积分20
5秒前
蓝灵完成签到,获得积分10
5秒前
快乐紫青完成签到 ,获得积分10
6秒前
the8完成签到,获得积分10
6秒前
8秒前
顾矜应助外向不愁采纳,获得10
9秒前
10秒前
缥缈完成签到,获得积分10
10秒前
13秒前
帕金森完成签到,获得积分10
13秒前
13秒前
笑傲江湖发布了新的文献求助10
14秒前
16秒前
鲁鲁完成签到,获得积分10
17秒前
mhy完成签到,获得积分10
18秒前
HD发布了新的文献求助10
18秒前
彩色代柔完成签到,获得积分10
18秒前
qyy发布了新的文献求助10
19秒前
myg8627完成签到,获得积分10
20秒前
CipherSage应助LLLLLL采纳,获得10
20秒前
myg8627发布了新的文献求助10
23秒前
24秒前
科研通AI5应助落雨采纳,获得10
26秒前
27秒前
28秒前
CC发布了新的文献求助10
29秒前
淀粉肠发布了新的文献求助10
29秒前
123完成签到,获得积分10
31秒前
32秒前
君莫笑发布了新的文献求助10
32秒前
LLLLLL发布了新的文献求助10
32秒前
34秒前
37秒前
我是老大应助水水采纳,获得10
37秒前
你在教我做事啊完成签到 ,获得积分10
38秒前
Eliauk完成签到 ,获得积分10
38秒前
笑傲江湖完成签到,获得积分10
38秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
An overview of orchard cover crop management 1000
Rapid Review of Electrodiagnostic and Neuromuscular Medicine: A Must-Have Reference for Neurologists and Physiatrists 1000
二维材料在应力作用下的力学行为和层间耦合特性研究 600
基于3um sOl硅光平台的集成发射芯片关键器件研究 500
Progress and Regression 400
A review of Order Plesiosauria, and the description of a new, opalised pliosauroid, Leptocleidus demoscyllus, from the early cretaceous of Coober Pedy, South Australia 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4812366
求助须知:如何正确求助?哪些是违规求助? 4125096
关于积分的说明 12764283
捐赠科研通 3862042
什么是DOI,文献DOI怎么找? 2125718
邀请新用户注册赠送积分活动 1147312
关于科研通互助平台的介绍 1041072