化学
尖晶石
钴
堆积
锂(药物)
氧化物
结构变化
相变
电化学
氧化钴
相(物质)
离子
阴极
结晶学
化学物理
降级(电信)
化学工程
纳米技术
过渡金属
格子(音乐)
氧气
析氧
氧化锂
自行车
锂钴氧化物
扫描电子显微镜
离子键合
作者
Weiguang Lin,Wei Su,Ting Lin,Qiu Fang,Shiyu Wang,Jing Chen,Y.‐L. He,Dongxiao Wang,Dongdong Xiao,Yingchun Lyu,Qinghua Zhang,Dong Su,Lin Gu
摘要
High-voltage cycling of layered cathode materials in lithium-ion batteries presents challenges related to structural instability. Deciphering atomic-scale structural degradation mechanisms is essential for improving their electrochemical performance at high voltages. This study utilized advanced electron microscopy and principal component analysis to detect subtle spinel-like structure induced by the migration of cobalt atoms within LiCoO2 subjected to high-voltage cycling at charge voltages of 4.6 and 4.8 V. The formation of the spinel-like configuration was accompanied by the emergence of a densified O1 phase beneath thin spinel-like layer on the (003) facets during charging, along with an intriguing local O3- to P3-type oxygen stacking transition observed in LiCoO2 charged to 4.8 V. Upon discharge, an enlarged and defective spinel phase preferentially formed on the non-(003) facets, and the migrated cobalt atoms cannot fully return to their original lattice sites, leading to the irreversible structural changes in LiCoO2. Long-term cycling revealed that the initial extended spinel phase underwent voltage-dependent evolution pathways, which contributed to accelerated capacity fading observed at the cutoff voltage of 4.8 V. Our findings provide new insights into the atomic-level structural transitions in LiCoO2 under high-voltage conditions, offering guidance for the development of more structurally robust LiCoO2 for high-voltage applications.
科研通智能强力驱动
Strongly Powered by AbleSci AI