Real-time characterization model of carbon emissions based on land-use status: A case study of Xi'an city, China

土地利用 环境科学 碳纤维 温室气体 碳汇 固碳 中国 碳核算 环境工程 地理 二氧化碳 计算机科学 工程类 土木工程 算法 气候变化 考古 复合数 生物 生态学
作者
Hui Luo,Xinyu Gao,Zhengguang Liu,Wanchen Liu,Yingyue Li,Xiangzhao Meng,Xiaohu Yang,Jinyue Yan,Lu Sun
出处
期刊:Journal of Cleaner Production [Elsevier BV]
卷期号:434: 140069-140069 被引量:1
标识
DOI:10.1016/j.jclepro.2023.140069
摘要

The traditional carbon accounting method, with a lag of over 2 years due to the release time of statistical yearbooks, impedes timely policy adjustments in urban planning and management. Hence, there is an urgent need to establish a real-time carbon emissions characterization model. Xi'an which has a complex land-use structure was chosen as the study site and its carbon emissions were calculated using the Emission Factor Method. The GIS-Kernel Density (KD) model was constructed, and land use was subdivided based on Point of Interest (POI) and road network data. Based on the results of carbon emissions accounting and land-use subdivision, a Multilayer perceptron (MLP) model was established. The RS images of Xi'an underwent supervised classification, and the carbon emissions of Xi'an were characterized based on the subdivision results and MLP model. The results show that: (1) The accuracy of the characterization model is more than 90%, and with the improvement of remote sensing technology, the accuracy will be further improved; (2) Compared with the existing model, this model can real time reflect the spatial distribution of carbon emissions; (3) Atmospheric emission of Xi'an will be 41.92 million tons at the end of 2022, a decrease of 2.80 million tons compared with that of 2020, but an increase of 0.33 million tons from 2021. The north of Xi'an and periphery of the central urban area are the main carbon sink loss areas, while the east of Xi'an and north foot of the Qinling Mountains are carbon sink growth areas.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
安青梅完成签到 ,获得积分10
4秒前
医生小白完成签到 ,获得积分10
6秒前
xmy完成签到,获得积分10
7秒前
知源完成签到 ,获得积分10
10秒前
小李找文献完成签到 ,获得积分10
10秒前
344061512完成签到 ,获得积分10
10秒前
杨一完成签到 ,获得积分10
11秒前
冷静傲丝完成签到 ,获得积分10
11秒前
开心的人杰完成签到,获得积分10
12秒前
Jeffrey完成签到,获得积分10
14秒前
思源应助聪慧芷巧采纳,获得10
15秒前
john完成签到,获得积分10
15秒前
Mr.Ren完成签到,获得积分10
15秒前
小井盖完成签到 ,获得积分10
18秒前
liujinjin完成签到,获得积分10
18秒前
狼主完成签到 ,获得积分10
18秒前
19秒前
蓝黑木头完成签到,获得积分10
22秒前
从容芮应助felix采纳,获得50
22秒前
从容芮应助felix采纳,获得10
22秒前
从容芮应助felix采纳,获得10
22秒前
zhwouc10发布了新的文献求助10
23秒前
暗示完成签到 ,获得积分10
24秒前
zyc1111111完成签到,获得积分10
26秒前
28秒前
Jeremy637完成签到 ,获得积分10
29秒前
34秒前
zxt完成签到,获得积分10
40秒前
Tingting完成签到 ,获得积分10
40秒前
biosep完成签到,获得积分10
40秒前
105完成签到 ,获得积分10
42秒前
happpy完成签到,获得积分10
43秒前
叶123完成签到,获得积分10
44秒前
烙饼完成签到 ,获得积分10
45秒前
stuuuuuuuuuuudy完成签到,获得积分10
45秒前
平平平平完成签到 ,获得积分10
46秒前
pp发布了新的文献求助10
48秒前
liguanyu1078完成签到,获得积分10
49秒前
ccc完成签到,获得积分10
50秒前
Clover完成签到 ,获得积分10
51秒前
高分求助中
Mass producing individuality 600
Algorithmic Mathematics in Machine Learning 500
Разработка метода ускоренного контроля качества электрохромных устройств 500
A Combined Chronic Toxicity and Carcinogenicity Study of ε-Polylysine in the Rat 400
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 300
The Power of High-Throughput Experimentation: General Topics and Enabling Technologies for Synthesis and Catalysis (Volume 1) 200
NK Cell Receptors: Advances in Cell Biology and Immunology by Colton Williams (Editor) 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3827379
求助须知:如何正确求助?哪些是违规求助? 3369689
关于积分的说明 10456822
捐赠科研通 3089365
什么是DOI,文献DOI怎么找? 1699847
邀请新用户注册赠送积分活动 817534
科研通“疑难数据库(出版商)”最低求助积分说明 770251