Machine learning based multi-method interpretation to enhance dissolved gas analysis for power transformer fault diagnosis

溶解气体分析 可靠性工程 随机森林 变压器 稳健性(进化) 计算机科学 数据挖掘 人工智能 工程类 变压器油 电气工程 化学 电压 生物化学 基因
作者
Suwarno Suwarno,Heri Sutikno,Rahman Azis Prasojo,Ahmed Abu‐Siada
出处
期刊:Heliyon [Elsevier BV]
卷期号:10 (4): e25975-e25975 被引量:21
标识
DOI:10.1016/j.heliyon.2024.e25975
摘要

Accurate interpretation of dissolved gas analysis (DGA) measurements for power transformers is essential to ensure overall power system reliability. Various DGA interpretation techniques have been proposed in the literature, including the Doernenburg Ratio Method (DRM), Roger Ratio Method (RRM), IEC Ratio Method (IRM), Duval Triangle Method (DTM), and Duval Pentagon Method (DPM). While these techniques are well documented and widely used by industry, they may lead to different conclusions for the same oil sample. Additionally, the ratio-based methods may result in an out-of-code condition if any of the used gases fall outside the specified limits. Incorrect interpretation of DGA measurements can lead to mismanagement and may lead to catastrophic consequences for operating power transformers. This paper presents a new interpretation technique for DGA aimed at improving its accuracy and consistency. The proposed multi-method approach employs s scoring index and random forest machine learning principles to integrate existing interpretation methods into one comprehensive technique. The robustness of the proposed method is assessed using DGA data collected from several transformers under various health conditions. Results indicate that the proposed multi-method, based on the scoring index and random forest; offers greater accuracy and consistency than individual conventional interpretation methods alone. Furthermore, the multi-method based on random forest demonstrated higher accuracy than employing the scoring index only.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
溯源完成签到 ,获得积分10
刚刚
hongshiyi发布了新的文献求助10
1秒前
1秒前
2秒前
2秒前
安然发布了新的文献求助10
2秒前
wxd完成签到,获得积分10
2秒前
细心帽子发布了新的文献求助10
4秒前
执着谷兰应助狂野篮球采纳,获得10
4秒前
搞怪羞花完成签到,获得积分10
5秒前
Zz完成签到,获得积分10
5秒前
NexusExplorer应助vonx采纳,获得10
6秒前
Owen应助111采纳,获得10
6秒前
Prime完成签到 ,获得积分10
6秒前
7秒前
7秒前
彭于彦祖应助阔达的海采纳,获得40
7秒前
哈哈哈哈发布了新的文献求助10
7秒前
兴奋白枫发布了新的文献求助10
7秒前
科研通AI6应助诚心的信封采纳,获得30
8秒前
necoe完成签到,获得积分20
9秒前
扶苏完成签到,获得积分10
9秒前
解羽发布了新的文献求助10
11秒前
可爱的函函应助gdsamele采纳,获得10
12秒前
田様应助jie酱拌面采纳,获得10
12秒前
乐乐应助Bellona采纳,获得10
12秒前
13秒前
瓶邪发布了新的文献求助10
13秒前
13秒前
14秒前
1123完成签到 ,获得积分20
16秒前
Suzzne完成签到,获得积分10
16秒前
17秒前
蟋蟀狂舞完成签到,获得积分10
17秒前
18秒前
20秒前
酷炫book发布了新的文献求助50
20秒前
nn发布了新的文献求助10
20秒前
学术虫发布了新的文献求助10
21秒前
溯源关注了科研通微信公众号
22秒前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
F-35B V2.0 How to build Kitty Hawk's F-35B Version 2.0 Model 2500
줄기세포 생물학 1000
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III - Liver, Biliary Tract, and Pancreas (3rd Edition) 600
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
2025-2031全球及中国蛋黄lgY抗体行业研究及十五五规划分析报告(2025-2031 Global and China Chicken lgY Antibody Industry Research and 15th Five Year Plan Analysis Report) 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4493425
求助须知:如何正确求助?哪些是违规求助? 3946571
关于积分的说明 12237247
捐赠科研通 3603904
什么是DOI,文献DOI怎么找? 1982176
邀请新用户注册赠送积分活动 1018825
科研通“疑难数据库(出版商)”最低求助积分说明 911490