An End-to-End Multi-stage Network for Ultrasound Video Object Segmentation

计算机科学 分割 人工智能 计算机视觉 编码器 过程(计算) 端到端原则 图像分割 模式识别(心理学) 操作系统
作者
Mei Wang,Shiyun Liu,Yijie Dong,Zhijie Xu,Qiao Pan,Dehua Chen,Jianwen Su
标识
DOI:10.1109/bibm58861.2023.10385350
摘要

Real-time tracking and segmentation of ultrasound video sequence are prerequisite for identifying and analyzing lesions. While significant progress has been made in natural video object segmentation, developing a model for ultrasound video is still challenging due to problems such as low distinguishability and low visual saliency of the target objects, large variation between adjacent frames. These challenges are inherently complex and cannot be effectively tackled through a single process. This paper develops an end-to-end multi-stage network (EMNet) for ultrasound video object segmentation. EMNet consists of two stages. The inital mask generation stage comprises a contrast-enhanced layer to enhance visual contrast between targets and backgrounds. In this stage, a module that adopts the encoder-attention-decoder structure is designed for mask induction. After obtaining the initial segmentation mask, the mask refinement stage is followed to further improve initial segmentation. To prevent the propagation of errors, a gating mechanism is designed to control the fusion of segmentation probability maps in the initial and refinement stages. By transforming certain fixed parameters in different stage into trainable parameters and establishing an end-to-end learning process, we optimized the performance of our approach. We evaluate EMNet on real-world lymphoma ultrasound video dataset. Compared with the best results among seven competing baselines, EMNet achieves the best performance in terms of ℐ&ℱ and ℱ measures, the second-best performance with Param and FPS measures, which demonstrates the competitive performance in terms of both speed and accuracy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
1秒前
1秒前
1秒前
2秒前
百事可乐完成签到,获得积分10
2秒前
2秒前
Iris完成签到,获得积分10
3秒前
5秒前
5秒前
阿玺发布了新的文献求助10
5秒前
菜就多练完成签到,获得积分10
5秒前
xiongyong发布了新的文献求助10
6秒前
敏感冰蓝发布了新的文献求助10
7秒前
7秒前
熊泰山发布了新的文献求助10
8秒前
8秒前
9秒前
科研通AI2S应助豆豆突采纳,获得10
9秒前
小会发布了新的文献求助10
9秒前
10秒前
10秒前
顺心的定帮完成签到 ,获得积分10
11秒前
11秒前
开心黑米完成签到,获得积分10
12秒前
Iris发布了新的文献求助10
12秒前
沉静弘文完成签到 ,获得积分10
13秒前
MYFuture应助感动背包采纳,获得10
14秒前
yyy发布了新的文献求助10
14秒前
15秒前
清尘hm发布了新的文献求助10
15秒前
长青发布了新的文献求助10
15秒前
PEA完成签到,获得积分10
16秒前
16秒前
16秒前
16秒前
李健应助wzc采纳,获得10
18秒前
18秒前
咖啡蓝图完成签到,获得积分10
18秒前
19秒前
1234发布了新的文献求助10
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Mechanics of Solids with Applications to Thin Bodies 5000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5599144
求助须知:如何正确求助?哪些是违规求助? 4684566
关于积分的说明 14835651
捐赠科研通 4666279
什么是DOI,文献DOI怎么找? 2537734
邀请新用户注册赠送积分活动 1505151
关于科研通互助平台的介绍 1470728