Multi-scale cross-attention transformer via graph embeddings for few-shot molecular property prediction

计算机科学 嵌入 分子图 图形 财产(哲学) 变压器 理论计算机科学 机器学习 人工智能 特征学习 数据挖掘 量子力学 认识论 物理 哲学 电压
作者
Luis H.M. Torres,Bernardete Ribeiro,Joel P. Arrais
出处
期刊:Applied Soft Computing [Elsevier BV]
卷期号:153: 111268-111268 被引量:8
标识
DOI:10.1016/j.asoc.2024.111268
摘要

Molecular property prediction is a critical step in drug discovery. Deep learning (DL) has accelerated the discovery of compounds with desirable molecular properties for successful drug development. However, molecular property prediction is a low-data problem which makes it hard to solve by regular DL approaches. Graph neural networks (GNNs) operate on graph-structured data using neighborhood aggregation to facilitate the prediction of molecular properties. Nonetheless, GNNs struggle to model the global-semantic structure of graph embeddings for molecular property prediction. Recently, Transformer networks have emerged to model such long-range interactions of molecular embeddings at different scales to predict downstream molecular property tasks. Yet, extending this behavior to molecular embeddings and enabling its training on small biological datasets remains an important challenge in drug discovery. In this work, we study how to learn multi-scale representations from comprehensive graph embeddings for molecular property prediction. To this end, we propose a few-shot GNN-Transformer architecture to combine graph embedding tokens of different sizes and produce stronger features for representation learning. A multi-scale Transformer applies a cross-attention mechanism to exchange information of deep representations fused across two separate branches for small and large embeddings. In addition, a two-module meta-learning framework iteratively updates model parameters across tasks to predict new molecular properties on few-shot data. Extensive experiments on multi-property prediction datasets demonstrate the superior performance of the proposed model when compared with other standard graph-based methods. The code and data underlying this article are available in the repository: https://github.com/ltorres97/FS-CrossTR.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Zhy完成签到,获得积分10
1秒前
李东东发布了新的文献求助10
2秒前
simon_chou关注了科研通微信公众号
6秒前
vvvaee完成签到 ,获得积分10
7秒前
8秒前
8秒前
10秒前
MrCoolWu完成签到,获得积分10
10秒前
bai发布了新的文献求助10
11秒前
Xiang发布了新的文献求助10
13秒前
舒服的曼云完成签到,获得积分10
13秒前
WXP发布了新的文献求助30
14秒前
感动书文完成签到,获得积分10
14秒前
15秒前
Lucas应助不忘初心采纳,获得10
15秒前
ding应助lulu采纳,获得50
16秒前
CodeCraft应助ylr采纳,获得10
18秒前
20秒前
科研通AI5应助320me666采纳,获得10
21秒前
duanhuiyuan应助优美的口红采纳,获得30
21秒前
Sean_sy完成签到,获得积分10
21秒前
22秒前
无奈曼云发布了新的文献求助10
22秒前
左然然完成签到,获得积分10
23秒前
落叶为谁殇完成签到,获得积分10
24秒前
25秒前
忧虑的代容完成签到,获得积分10
26秒前
科研通AI2S应助科研通管家采纳,获得10
28秒前
ylr完成签到,获得积分10
28秒前
田様应助科研通管家采纳,获得10
29秒前
科研通AI5应助科研通管家采纳,获得10
29秒前
simon_chou发布了新的文献求助10
29秒前
29秒前
英姑应助科研通管家采纳,获得10
29秒前
我是老大应助科研通管家采纳,获得10
29秒前
bkagyin应助科研通管家采纳,获得10
29秒前
科研通AI2S应助科研通管家采纳,获得10
29秒前
852应助科研通管家采纳,获得10
29秒前
不忘初心发布了新的文献求助10
30秒前
大胆海瑶完成签到,获得积分10
31秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3785749
求助须知:如何正确求助?哪些是违规求助? 3331166
关于积分的说明 10250472
捐赠科研通 3046615
什么是DOI,文献DOI怎么找? 1672143
邀请新用户注册赠送积分活动 801026
科研通“疑难数据库(出版商)”最低求助积分说明 759979