A physicochemical-sensing electronic skin for stress response monitoring

皮肤电导 出汗 压力源 可穿戴计算机 压力(语言学) 持续监测 生命体征 计算机科学 皮肤温度 生物标志物 生物医学工程 人工智能 医学 化学 神经科学 嵌入式系统 生物 外科 工程类 哲学 精神科 生物化学 语言学 运营管理
作者
Changhao Xu,Yu Song,Juliane R. Sempionatto,Samuel A. Solomon,You Yu,Hnin Yin Yin Nyein,Roland Yingjie Tay,Jiahong Li,Wenzheng Heng,Jihong Min,Alison Lao,Tzung K. Hsiai,Jennifer A. Sumner,Wei Gao
出处
期刊:Nature electronics [Nature Portfolio]
卷期号:7 (2): 168-179 被引量:119
标识
DOI:10.1038/s41928-023-01116-6
摘要

Approaches to quantify stress responses typically rely on subjective surveys and questionnaires. Wearable sensors can potentially be used to continuously monitor stress-relevant biomarkers. However, the biological stress response is spread across the nervous, endocrine and immune systems, and the capabilities of current sensors are not sufficient for condition-specific stress response evaluation. Here we report an electronic skin for stress response assessment that non-invasively monitors three vital signs (pulse waveform, galvanic skin response and skin temperature) and six molecular biomarkers in human sweat (glucose, lactate, uric acid, sodium ions, potassium ions and ammonium). We develop a general approach to prepare electrochemical sensors that relies on analogous composite materials for stabilizing and conserving sensor interfaces. The resulting sensors offer long-term sweat biomarker analysis of more than 100 h with high stability. We show that the electronic skin can provide continuous multimodal physicochemical monitoring over a 24-hour period and during different daily activities. With the help of a machine learning pipeline, we also show that the platform can differentiate three stressors with an accuracy of 98.0% and quantify psychological stress responses with a confidence level of 98.7%. An electronic skin that is capable of long-term monitoring of vital signs and molecular biomarkers in sweat can—with the help of machine learning—be used to classify stress responses with high accuracy and predict state anxiety levels with high reliability.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
2秒前
dajiejie完成签到 ,获得积分10
4秒前
Ding-Ding完成签到,获得积分10
4秒前
4秒前
5秒前
5秒前
6秒前
龙傲天完成签到,获得积分10
7秒前
谨慎哈密瓜完成签到,获得积分10
8秒前
翔子发布了新的文献求助10
9秒前
YG完成签到,获得积分10
11秒前
丘比特应助翔子采纳,获得10
13秒前
月亮在o完成签到 ,获得积分10
13秒前
CipherSage应助耍酷的世平采纳,获得10
14秒前
科研通AI5应助hellobaboon采纳,获得10
16秒前
16秒前
17秒前
超级的千青完成签到 ,获得积分10
19秒前
科研通AI5应助科研通管家采纳,获得50
21秒前
21秒前
李爱国应助科研通管家采纳,获得10
21秒前
乐乐应助科研通管家采纳,获得10
21秒前
汉堡包应助科研通管家采纳,获得10
21秒前
21秒前
21秒前
21秒前
小刘一定能读C9博完成签到 ,获得积分10
21秒前
22秒前
桐桐应助冷静的奇迹采纳,获得10
23秒前
wzz完成签到,获得积分10
24秒前
秃头披风侠完成签到,获得积分10
24秒前
飘逸初蓝完成签到,获得积分10
24秒前
NexusExplorer应助小蚊子采纳,获得10
25秒前
暗月皇发布了新的文献求助10
27秒前
28秒前
28秒前
biang完成签到,获得积分10
31秒前
31秒前
零碎的岛屿应助冷傲迎梦采纳,获得10
32秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Technologies supporting mass customization of apparel: A pilot project 450
Mixing the elements of mass customisation 360
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
Political Ideologies Their Origins and Impact 13th Edition 260
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3781132
求助须知:如何正确求助?哪些是违规求助? 3326545
关于积分的说明 10227747
捐赠科研通 3041707
什么是DOI,文献DOI怎么找? 1669585
邀请新用户注册赠送积分活动 799100
科研通“疑难数据库(出版商)”最低求助积分说明 758745