Diagnostic Performance of Noninvasive Coronary Computed Tomography Angiography-Derived FFR for Coronary Lesion-Specific Ischemia Based on Deep Learning Analysis

部分流量储备 医学 冠状动脉疾病 接收机工作特性 放射科 诊断准确性 狭窄 曲线下面积 冠状动脉造影 心脏病学 血管造影 计算机断层血管造影 缺血 内科学 核医学 心肌梗塞
作者
Haoyu Wu,Lei Liang,Fuyu Qiu,Wenqi Han,Zheng Yang,Jie Qi,Jizhao Deng,Yi‐Da Tang,Xiling Shou,Haichao Chen
出处
期刊:Reviews in Cardiovascular Medicine [IMR Press]
卷期号:25 (1): 20-20 被引量:3
标识
DOI:10.31083/j.rcm2501020
摘要

Background: The noninvasive computed tomography angiography–derived fractional flow reserve (CT-FFR) can be used to diagnose coronary ischemia. With advancements in associated software, the diagnostic capability of CT-FFR may have evolved. This study evaluates the effectiveness of a novel deep learning-based software in predicting coronary ischemia through CT-FFR. Methods: In this prospective study, 138 subjects with suspected or confirmed coronary artery disease were assessed. Following indication of 30%–90% stenosis on coronary computed tomography (CT) angiography, participants underwent invasive coronary angiography and fractional flow reserve (FFR) measurement. The diagnostic performance of the CT-FFR was determined using the FFR as the reference standard. Results: With a threshold of 0.80, the CT-FFR displayed an impressive diagnostic accuracy, sensitivity, specificity, area under the receiver operating characteristic curve (AUC), positive predictive value (PPV), and negative predictive value (NPV) of 97.1%, 96.2%, 97.7%, 0.98, 96.2%, and 97.7%, respectively. At a 0.75 threshold, the CT-FFR showed a diagnostic accuracy, sensitivity, specificity, AUC, PPV, and NPV of 84.1%, 78.8%, 85.7%, 0.95, 63.4%, and 92.8%, respectively. The Bland–Altman analysis revealed a direct correlation between the CT-FFR and FFR (p < 0.001), without systematic differences (p = 0.085). Conclusions: The CT-FFR, empowered by novel deep learning software, demonstrates a strong correlation with the FFR, offering high clinical diagnostic accuracy for coronary ischemia. The results underline the potential of modern computational approaches in enhancing noninvasive coronary assessment.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Alice完成签到 ,获得积分10
1秒前
mono应助下次一定采纳,获得10
1秒前
1秒前
1秒前
汉堡包应助危机的香萱采纳,获得10
2秒前
丘比特应助Sun采纳,获得10
5秒前
5秒前
5秒前
骆驼顶顶发布了新的文献求助10
6秒前
科研通AI6应助yr采纳,获得10
6秒前
张包子发布了新的文献求助10
8秒前
9秒前
清爽的忆梅完成签到 ,获得积分10
9秒前
彭于晏应助田彬杰采纳,获得10
9秒前
顾矜应助房房房破防啦采纳,获得10
10秒前
10秒前
10秒前
10秒前
10秒前
浮游应助科研通管家采纳,获得10
10秒前
10秒前
ding应助科研通管家采纳,获得10
10秒前
orixero应助科研通管家采纳,获得10
10秒前
BowieHuang应助科研通管家采纳,获得10
10秒前
浮游应助科研通管家采纳,获得10
10秒前
浮游应助科研通管家采纳,获得10
10秒前
浮游应助科研通管家采纳,获得10
10秒前
浮游应助科研通管家采纳,获得10
10秒前
竹筏过海应助科研通管家采纳,获得30
10秒前
11秒前
田様应助科研通管家采纳,获得10
11秒前
CipherSage应助科研通管家采纳,获得10
11秒前
无极微光应助科研通管家采纳,获得20
11秒前
竹筏过海应助科研通管家采纳,获得30
11秒前
科研通AI6应助科研通管家采纳,获得10
11秒前
搜集达人应助科研通管家采纳,获得10
11秒前
11秒前
ding应助科研通管家采纳,获得10
11秒前
天天快乐应助科研通管家采纳,获得10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 6000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
The Political Psychology of Citizens in Rising China 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5637867
求助须知:如何正确求助?哪些是违规求助? 4744182
关于积分的说明 15000410
捐赠科研通 4796064
什么是DOI,文献DOI怎么找? 2562285
邀请新用户注册赠送积分活动 1521829
关于科研通互助平台的介绍 1481714