R3-DICnet: an end-to-end recursive residual refinement DIC network for larger deformation measurement

数字图像相关 残余物 变形(气象学) 计算机科学 计量学 算法 深度学习 一般化 光学 人工智能 材料科学 数学 物理 数学分析 复合材料
作者
Jiashuai Yang,Qian Kemao,Lianpo Wang
出处
期刊:Optics Express [The Optical Society]
卷期号:32 (1): 907-907 被引量:16
标识
DOI:10.1364/oe.505655
摘要

Digital image correlation (DIC) is an optical metrology method for measuring object deformation and has been widely used in many fields. Recently, the deep learning based DIC methods have achieved good performance, especially for small and complex deformation measurements. However, the existing deep learning based DIC methods with limited measurement range cannot satisfy the needs of real-world scenarios. To tackle this problem, a recursive iterative residual refinement DIC network (R 3 -DICnet) is proposed in this paper, which mimics the idea of the traditional method of two-step method, where initial value estimation is performed on deep features and then iterative refinement is performed on shallow features based on the initial value, so that both small and large deformations can be accurately measured. R 3 -DICnet not only has high accuracy and efficiency, but also strong generalization ability. Synthetic image experiments show that the proposed R 3 -DICnet is suitable for both small and large deformation measurements, and it has absolute advantages in complex deformation measurement. The accuracy and generalization ability of the R 3 -DICnet for practical measurement experiments were also verified by uniaxial tensile and wedge splitting tests.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
徘徊到发布了新的文献求助20
刚刚
1秒前
量子星尘发布了新的文献求助10
1秒前
量子星尘发布了新的文献求助10
2秒前
轻松白云发布了新的文献求助10
2秒前
2秒前
景语兰完成签到,获得积分10
2秒前
仙女爷爷完成签到,获得积分20
2秒前
2秒前
顾矜应助请我吃葡萄采纳,获得10
3秒前
热情爆米花完成签到 ,获得积分10
3秒前
kk发布了新的文献求助10
3秒前
雨打麻花完成签到,获得积分10
3秒前
3秒前
3秒前
慕青应助斑马采纳,获得10
3秒前
3秒前
3秒前
dvvvv应助科研通管家采纳,获得10
3秒前
3秒前
Akirus应助科研通管家采纳,获得10
3秒前
dvvvv应助科研通管家采纳,获得10
3秒前
4秒前
Akirus应助科研通管家采纳,获得10
4秒前
4秒前
南衣应助科研通管家采纳,获得10
4秒前
南衣应助科研通管家采纳,获得10
4秒前
4秒前
4秒前
FashionBoy应助科研通管家采纳,获得10
4秒前
欣喜雅香发布了新的文献求助10
4秒前
FashionBoy应助科研通管家采纳,获得10
4秒前
深情安青应助科研通管家采纳,获得10
4秒前
深情安青应助科研通管家采纳,获得10
4秒前
科研通AI2S应助科研通管家采纳,获得10
4秒前
DTOU发布了新的文献求助10
4秒前
科研通AI2S应助科研通管家采纳,获得10
4秒前
所所应助科研通管家采纳,获得10
4秒前
所所应助科研通管家采纳,获得10
4秒前
自然墨镜应助科研通管家采纳,获得10
4秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Aerospace Engineering Education During the First Century of Flight 2000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5769283
求助须知:如何正确求助?哪些是违规求助? 5579143
关于积分的说明 15421126
捐赠科研通 4902990
什么是DOI,文献DOI怎么找? 2638048
邀请新用户注册赠送积分活动 1585929
关于科研通互助平台的介绍 1541056