Deep learning-based inpainting of high dynamic range fringe pattern for high-speed 3D measurement of industrial metal parts

人工智能 增采样 编码器 高动态范围 计算机视觉 计算机科学 动态范围 图像(数学) 操作系统
作者
Dejun Xi,Lei Hou,Fei Wu,Yi Qin
出处
期刊:Advanced Engineering Informatics [Elsevier BV]
卷期号:60: 102428-102428 被引量:3
标识
DOI:10.1016/j.aei.2024.102428
摘要

To guarantee the manufacturing quality of industrial metal parts, it is important for three-dimensional measuring their shapes on production line. When using digital fringe projection profilometry to measure the metal parts, that is, high dynamic range objects, the issue of local over-exposure arises. This over-exposure causes the loss of fringe pattern and phase information, resulting in a significant impact on the accuracy of three-dimensional measurement. To address this issue, an encoder-decoder network guided by a reflective prior is proposed. This network aims to inpaint the problematic fringe patterns caused by highly reflective surfaces. The objective is to convert these patterns into ideal fringe patterns with uniform gray levels. The proposed encoder-decoder network consists of an encoder network with a dual path guided by the reflective prior and a decoder network with partial convolution. By utilizing the residual module and transformer, a novel encoder module is constructed for extracting global feature information. Meanwhile, a reflective-prior guidance module is proposed and incorporated into the coding network to assist in estimating highly reflective areas. By embedding the partial convolution, a decoder network is designed for fusing the shallow semantic features. By incorporating multiple decoder modules, the decoder network is built to distinguish between pixels in the high reflection area and the non-high reflection area during the upsampling process. The proposed fringe inpainting method is used on the actual metal part dataset with high reflectivity. The experimental results indicate that the proposed method can handle various types of modulated fringe patterns, including those with different metal parts, fringe frequencies, and overexposure. Additionally, it can effectively eliminate the highly reflective area and restore missing fringe phase information. Consequently, it improves the accuracy of subsequent 3D reconstruction.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
天道酬勤完成签到,获得积分10
刚刚
共享精神应助快乐滑板采纳,获得10
2秒前
3秒前
冯如桂发布了新的文献求助10
3秒前
3秒前
爆米花应助mo采纳,获得20
3秒前
4秒前
自渡完成签到 ,获得积分10
6秒前
cwy发布了新的文献求助10
6秒前
高高雪瑶完成签到,获得积分10
7秒前
白勺发布了新的文献求助10
9秒前
姚序东发布了新的文献求助10
10秒前
点墨完成签到,获得积分10
12秒前
田様应助研友_Z1xbgn采纳,获得10
14秒前
Maestro_S应助快乐滑板采纳,获得10
14秒前
端庄大白发布了新的文献求助20
14秒前
zxc完成签到,获得积分10
14秒前
风中叶子发布了新的文献求助50
15秒前
晓布衣完成签到 ,获得积分10
19秒前
小文殊发布了新的文献求助10
21秒前
24秒前
无花果应助Jia采纳,获得10
25秒前
杨中森发布了新的文献求助10
25秒前
朴实成风完成签到 ,获得积分10
26秒前
英姑应助润润采纳,获得10
27秒前
孙燕应助快乐滑板采纳,获得10
28秒前
hyl发布了新的文献求助10
29秒前
bkagyin应助小文殊采纳,获得10
29秒前
yi发布了新的文献求助30
30秒前
31秒前
32秒前
33秒前
无花果应助KerryDoe采纳,获得10
33秒前
36秒前
mo发布了新的文献求助20
37秒前
热心的曼梅完成签到,获得积分20
37秒前
38秒前
大糖糕僧完成签到,获得积分10
39秒前
高分求助中
Applied Survey Data Analysis (第三版, 2025) 800
Narcissistic Personality Disorder 700
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
Handbook of Experimental Social Psychology 500
The Martian climate revisited: atmosphere and environment of a desert planet 500
Transnational East Asian Studies 400
Towards a spatial history of contemporary art in China 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3846128
求助须知:如何正确求助?哪些是违规求助? 3388519
关于积分的说明 10553286
捐赠科研通 3109083
什么是DOI,文献DOI怎么找? 1713334
邀请新用户注册赠送积分活动 824702
科研通“疑难数据库(出版商)”最低求助积分说明 774982